
1

CSE 373

Objects in Collections:

Object; equals; compareTo; mutability

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Recall: A typical Java class
public class Point {

private int x; // fields

private int y;

public Point(int x, int y) { // constructor

this.x = x;

this.y = y;

}

public int getX() { return x; } // accessor

public int getY() { return y; }

public void translate(int dx, int dy) {

x += dx;

y += dy; // mutator

}

public String toString() { // for printing

return "(" + x + ", " + y + ")";

}

}

3

The class Object

• The class Object forms the root of the

overall inheritance tree of all Java classes.

� Every class is implicitly a subclass of Object

• The Object class defines several methods

that become part of every class you write.

For example:

� public String toString()

Returns a text representation of the object,

usually so that it can be printed.

4

Object methods

� What does this list of methods tell you about Java's design?

text representation of the objectpublic String toString()

methods related to concurrency

and locking (seen later)

public void notify()

public void notifyAll()

public void wait()

public void wait(...)

a code suitable for putting this

object into a hash collection

public int hashCode()

info about the object's typepublic Class<?> getClass()

called during garbage collectionprotected void finalize()

returns whether two objects have

the same state

public boolean equals(Object o)

creates a copy of the objectprotected Object clone()

descriptionmethod

5

Recall: comparing objects

• The == operator does not work well with objects.

== tests for referential equality, not state-based equality.

It produces true only when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

// p1.equals(p2)?

// p2.equals(p3)?

...

x 5 y 3
p1

p2

...

x 5 y 3

p3

6

Default equals method

• The Object class's equals implementation is very simple:

public class Object {

...

public boolean equals(Object o) {

return this == o;

}

}

• However:

� When we have used equals with various kinds of objects, it didn't

behave like == . Why not?

• Classes can override equals to provide their own equality test.

� The Java API documentation for equals is elaborate. Why?

• The equality test must meet various guidelines to be a proper test.

7

Flawed equals method 1
public boolean equals(Point other) { // bad

if (x == other.x && y == other.y) {

return true;

} else {

return false;

}

}

• Let's write an equals method for a Point class.

� The method should compare the state of the two objects and return

true if they have the same x/y position.

� What's wrong with the above implementation?

8

Flaws in the method

• The body can be shortened to the following (boolean zen):

return x == other.x && y == other.y;

• The parameter to equals must be of type Object, not Point.

� It should be legal to compare a Point to any other object:

// this should be allowed

Point p = new Point(7, 2);

if (p.equals("hello")) { // false

...

� equals should always return false if a non-Point is passed.

� By writing ours to accept a Point, we have overloaded equals.

• Point has two equals methods: One takes an Object, one takes a Point.

9

Flawed equals method 2
public boolean equals(Object o) { // bad

return x == o.x && y == o.y;

}

• What's wrong with the above implementation?
� It does not compile:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

return x == o.x && y == o.y;

^

� The compiler is saying,

"o could be any object. Not every object has an x field."

10

The instanceof keyword

reference instanceof type

if (variable instanceof type) {

statement(s);

}

• A binary, infix, boolean operator.

• Tests whether variable refers

to an object of class type

(or any subclass of type).

String s = "hello";

Point p = new Point();
falsenull instanceof Object

falsep instanceof String

truep instanceof Object

falsenull instanceof String

trues instanceof Object

truep instanceof Point

trues instanceof String

falses instanceof Point

resultexpression

11

Correct equals method
// Returns true if o refers to a Point object

// with the same (x, y) coordinates as

// this Point; otherwise returns false.

public boolean equals(Object o) {

if (o instanceof Point) {

Point other = (Point) o;

return x == other.x && y == other.y;

} else {

return false;

}

}

• Casting references is different than casting primitives.

� Doesn't actually change the object that is referred to.

� Tells the compiler to assume that o refers to a Point object.

12

Comparing objects

• Operators like < and > do not work with objects in Java.

� But we do think of some types as having an ordering (e.g. Dates).

� (In other languages, we can enable <, > with operator overloading.)

• natural ordering: Rules governing the relative placement of all

values of a given type.

� Implies a notion of equality (like equals) but also < and > .

� total ordering: All elements can be arranged in A ≤ B ≤ C ≤ ... order.

• comparison function: Code that, when given two values A and B of a

given type, decides their relative ordering:

� A < B, A == B, A > B

13

The Comparable interface

• The standard way for a Java class to define a comparison function

for its objects is to implement the Comparable interface.

public interface Comparable<T> {

public int compareTo(T other);

}

• A call of A.compareTo(B) should return:

a value < 0 if A comes "before" B in the ordering,

a value > 0 if A comes "after" B in the ordering,

or exactly 0 if A and B are considered "equal" in the ordering.

14

compareTo example
public class Point implements Comparable<Point> {

// sort by x and break ties by y

public int compareTo(Point other) {

if (x < other.x) {

return -1;

} else if (x > other.x) {

return 1;

} else if (y < other.y) {

return -1; // same x, smaller y

} else if (y > other.y) {

return 1; // same x, larger y

} else {

return 0; // same x and same y

}

}

}

15

compareTo tricks

• subtraction trick - Subtracting ints works well for compareTo:

public int compareTo(Point other) {

if (x != other.x) {

return x - other.x; // sort by x first

} else {

return y - other.y; // if same x, break tie by y

}

}

� The idea:

• if x > other.x, then x - other.x > 0

• if x < other.x, then x - other.x < 0

• if x == other.x, then x - other.x == 0

• To easily compare two doubles, try Double.compare:

public int compareTo(Employee other) {

return Double.compare(salary, other.salary);

}

16

compareTo tricks 2

• delegation trick - If your object's fields are comparable (such as

strings), use their compareTo results to help you:

// compare by name, e.g. "Joe" < "Suzy"

public int compareTo(Employee other) {

return name.compareTo(other.getName());

}

• Guava has a nice ComparisonChain class for comparisons:

// compare by name, break tie by salary, then id

public int compareTo(Employee other) {

return ComparisonChain.start()

.compare(name, other.name)

.compare(salary, other.salary)

.compare(id, other.id)

.result();

}

17

compareTo and equals

•compareTo should generally be consistent with equals.

� a.compareTo(b) == 0 should imply that a.equals(b) .

• equals-compareTo trick - If your class needs to implement both

equals and compareTo, you can take advantage:

public boolean equals(Object o) {

if (o instanceof Employee) {

Employee other = (Employee) o;

return this.compareTo(other) == 0;

} else {

return false;

}

}

18

compareTo and collections

• Java's binary search methods call compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};

int index = Arrays.binarySearch(a, "dan"); // 3

• Java's TreeSet/Map use compareTo internally for ordering.

� Only classes that implement Comparable can be used as elements.

Set<String> set = new TreeSet<String>();

for (int i = a.length - 1; i >= 0; i--) {

set.add(a[i]);

}

System.out.println(s);

// [al, bob, cari, dan, mike]

19

Mutation
• mutation: A modification to the state of an object.

Point p = new Point(3, 5);

p.translate(1, 3); // mutator; (4, 8)

• immutable: Unable to be changed (mutated).

� Java example: Strings (can't change one, only produce a new one)

• Why? What is good about immutability?

� easier to design, implement, and use immutable objects

� less prone to developer error, misuse by clients

� more secure (sometimes)

� can be optimized for better performance / memory use (sometimes)

20

Making a class immutable

1. Don't provide any methods that modify the object's state.

2. Ensure that the class cannot be extended.

3. Declare all fields final (unable to be modified once set).

� local variables (value can be set once, and can never be changed)

� fields (they can be set only once, in the constructor)

� static fields (they become "class constants")

� classes (the class becomes unable to be subclassed)

� methods (the method becomes unable to be overridden)

4. Declare all fields private. (ensure encapsulation)

5. Ensure exclusive access to any mutable object fields.

� Don't let a client get a reference to a field that is a mutable object.

21

Mutable Fraction class
public class Fraction implements Cloneable, Comparable<Fraction> {

private int numerator, denominator;

public Fraction(int n)

public Fraction(int n, int d)

public int getNumerator(), getDenominator()

public void setNumerator(int n), setDenominator(int d)

public Fraction clone()

public int compareTo(Fraction other)

public boolean equals(Object o)

public String toString()

public void add(Fraction other)

public void subtract(Fraction other)

public void multiply(Fraction other)

public void divide(Fraction other)

}

� How would we make this class immutable?

22

Immutable Fraction class
public final class Fraction implements Comparable<Fraction> {

private final int numerator, denominator;

public Fraction(int n)

public Fraction(int n, int d)

public int getNumerator(), getDenominator()

// no more setN/D methods

// no clone method needed

public int compareTo(Fraction other)

public boolean equals(Object o)

public String toString()

public Fraction add(Fraction other) // past mutators

public Fraction subtract(Fraction other) // are producers

public Fraction multiply(Fraction other) // (return a new

public Fraction divide(Fraction other) // object)

}

23

Immutable methods
// mutable version

public void add(Fraction other) {

numerator = numerator * other.denominator

+ other.numerator * denominator;

denominator = denominator * other.denominator;

reduce(); // private helper to reduce fraction

}

// immutable version

public Fraction add(Fraction other) {

int n = numerator * other.denominator

+ other.numerator * denominator;

int d = denominator * other.denominator;

return new Fraction(n, d);

}

• former mutators become producers

� create/return a new immutable object rather than modifying this one

24

Mutability and collections
Set<Time> times = new HashSet<Time>();

times.add(new Time(11, 30, "AM"));

times.add(new Time(12, 45, "PM"));

Course c = new Course("CSE 373", 3, times, ...);

...

// c will be modified!

times.add(new Time(3, 30, "PM"));

• Since the course stores the set of times passed in, the object is in

fact mutable. (called "representation exposure")

� What could the Course author do to provide an immutable class?

• copy the set of times in constructor;

don't return a direct reference to it in getTimes()

