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Prioritization problems

• print jobs: CSE lab printers constantly accept and complete jobs 

from all over the building.  We want to print faculty jobs before staff 

before student jobs, and grad students before undergrad, etc.

• ER scheduling: Scheduling patients for treatment in the ER.  A 

gunshot victim should be treated sooner than a guy with a cold, 

regardless of arrival time. How do we always choose the most 

urgent case when new patients continue to arrive?

• key operations we want:

� add an element  (print job, patient, etc.)

� get/remove the most "important" or "urgent" element
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Priority Queue ADT

• priority queue: A collection of ordered elements that provides fast 

access to the minimum (or maximum) element.

� add adds in order

� peek returns minimum or "highest priority" value

� remove removes/returns minimum value

� isEmpty, clear, size, iterator O(1)

pq.add("if");

pq.add("from");

...

priority queue

"the"
"of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

pq.remove() "by"
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Unfilled array?

• Consider using an unfilled array to implement a priority queue.

� add: Store it in the next available index, as in a list.

� peek: Loop over elements to find minimum element.

� remove: Loop over elements to find min.  Shift to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add?  peek?  remove?

• O(1), O(N), O(N)

• (peek must loop over the array;  remove must shift elements)
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Sorted array?

• Consider using a sorted array to implement a priority queue.

� add: Store it in the proper index to maintain sorted order.

� peek: Minimum element is in index [0].

� remove: Shift elements to remove min from index [0].

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add?  peek?  remove?

• O(N), O(1), O(N)

• (add and remove must shift elements)
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Linked list?

• Consider using a doubly linked list to implement a priority queue.

� add: Store it at the end of the linked list.

� peek: Loop over elements to find minimum element.

� remove: Loop over elements to find min.  Unlink to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add?  peek?  remove?

• O(1), O(N), O(N)

• (peek and remove must loop over the linked list)

9 23 8 -3 49 12

front back
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Sorted linked list?

• Consider using a sorted linked list to implement a priority queue.

� add: Store it in the proper place to maintain sorted order.

� peek: Minimum element is at the front.

� remove: Unlink front element to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add?  peek?  remove?

• O(N), O(1), O(1)

• (add must loop over the linked list to find the proper insertion point)

-3 8 9 12 23 49

front back
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Binary search tree?

• Consider using a binary search tree to implement a PQ.

� add: Store it in the proper BST L/R - ordered spot.

� peek: Minimum element is at the far left edge of the tree.

� remove: Unlink far left element to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add?  peek?  remove?

• O(log N), O(log N), O(log N)...?

• (good in theory, but the tree tends to become unbalanced to the right)

49-3
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Unbalanced binary tree
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
queue.add(16);
queue.add(34);
queue.remove();
queue.remove();
queue.add(42);
queue.add(45);
queue.remove();

� Simulate these operations.  What is the tree's shape?

� A tree that is unbalanced has a height close to N rather than log N, 

which breaks the expected runtime of many operations.
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Heaps

• heap: A complete binary tree with vertical ordering.

� complete tree: Every level is full except possibly the lowest level, 

which must be filled from left to right

• (i.e., a node may not have any children until all possible siblings exist)
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Heap ordering

• heap ordering: If P ≤ X  for every element X with parent P.

� Parents' values are always smaller than those of their children.

� Implies that minimum element is always the root (a "min-heap").

• variation: "max-heap" stores largest element at root, reverses ordering

� Is a heap a BST?  How are they related?
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Which are min-heaps?
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Heap height and runtime

• The height of a complete tree is always log N.

� How do we know this for sure?

• Because of this, if we implement a priority queue using a heap, we 

can provide the following runtime guarantees:

� add: O(log N)

� peek: O(1)

� remove: O(log N)

n-node complete tree

of height h:

2h ≤ n ≤ 2h+1 – 1

h = log n
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The add operation

• When an element is added to a heap, where should it go?

� Must insert a new node while maintaining heap properties.

� queue.add(15);

996040
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The add operation

• When an element is added to a heap, it should be initially placed as 

the rightmost leaf (to maintain the completeness property).

� But the heap ordering property becomes broken!
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"Bubbling up" a node

• bubble up: To restore heap ordering, the newly added element is 

shifted ("bubbled") up the tree until it reaches its proper place.

� Weiss: "percolate up" by swapping with its parent

� How many bubble-ups are necessary, at most?
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Bubble-up exercise

• Draw the tree state of a min-heap after adding these elements:

� 6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2

1044225

619

2

76 50

11

55 88 20
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The peek operation

• A peek on a min-heap is trivial to perform.

� because of heap properties, minimum element is always the root

� O(1) runtime

• Peek on a max-heap would be O(1) as well (return max, not min)

996040

8020
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The remove operation

• When an element is removed from a heap, what should we do?

� The root is the node to remove.  How do we alter the tree?

� queue.remove();
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The remove operation

• When the root is removed from a heap, it should be initially 

replaced by the rightmost leaf (to maintain completeness).

� But the heap ordering property becomes broken!

996040

8020

10

700 50

85

65

996040

8020

65

700 50

85

65



22

"Bubbling down" a node

• bubble down: To restore heap ordering, the new improper root is 

shifted ("bubbled") down the tree until it reaches its proper place.

� Weiss: "percolate down" by swapping with its smaller child  (why?)

� How many bubble-down are necessary, at most?

996040

8020

65

74 50

85 996050
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20

74 65
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Bubble-down exercise

• Suppose we have the min-heap shown below.  

• Show the state of the heap tree after remove has been called 3 

times, and which elements are returned by the removal.

1044225

619

2

76 50

11

55 88 20


