
1

CSE 373

Priority queue implementation; Intro to heaps

read: Weiss Ch. 6

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Prioritization problems

• print jobs: CSE lab printers constantly accept and complete jobs

from all over the building. We want to print faculty jobs before staff

before student jobs, and grad students before undergrad, etc.

• ER scheduling: Scheduling patients for treatment in the ER. A

gunshot victim should be treated sooner than a guy with a cold,

regardless of arrival time. How do we always choose the most

urgent case when new patients continue to arrive?

• key operations we want:

� add an element (print job, patient, etc.)

� get/remove the most "important" or "urgent" element

3

Priority Queue ADT

• priority queue: A collection of ordered elements that provides fast

access to the minimum (or maximum) element.

� add adds in order

� peek returns minimum or "highest priority" value

� remove removes/returns minimum value

� isEmpty, clear, size, iterator O(1)

pq.add("if");

pq.add("from");

...

priority queue

"the"
"of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

pq.remove() "by"

4

Unfilled array?

• Consider using an unfilled array to implement a priority queue.

� add: Store it in the next available index, as in a list.

� peek: Loop over elements to find minimum element.

� remove: Loop over elements to find min. Shift to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add? peek? remove?

• O(1), O(N), O(N)

• (peek must loop over the array; remove must shift elements)

6size

12

5

0

6

49

4

0

7

0

8

8

2

-3

3

0239value

910index

5

Sorted array?

• Consider using a sorted array to implement a priority queue.

� add: Store it in the proper index to maintain sorted order.

� peek: Minimum element is in index [0].

� remove: Shift elements to remove min from index [0].

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add? peek? remove?

• O(N), O(1), O(N)

• (add and remove must shift elements)

6size

49

5

0

6

23

4

0

7

0

8

9

2

12

3

08-3value

910index

6

Linked list?

• Consider using a doubly linked list to implement a priority queue.

� add: Store it at the end of the linked list.

� peek: Loop over elements to find minimum element.

� remove: Loop over elements to find min. Unlink to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add? peek? remove?

• O(1), O(N), O(N)

• (peek and remove must loop over the linked list)

9 23 8 -3 49 12

front back

7

Sorted linked list?

• Consider using a sorted linked list to implement a priority queue.

� add: Store it in the proper place to maintain sorted order.

� peek: Minimum element is at the front.

� remove: Unlink front element to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add? peek? remove?

• O(N), O(1), O(1)

• (add must loop over the linked list to find the proper insertion point)

-3 8 9 12 23 49

front back

8

Binary search tree?

• Consider using a binary search tree to implement a PQ.

� add: Store it in the proper BST L/R - ordered spot.

� peek: Minimum element is at the far left edge of the tree.

� remove: Unlink far left element to remove.

queue.add(9);

queue.add(23);

queue.add(8);

queue.add(-3);

queue.add(49);

queue.add(12);

queue.remove();

� How efficient is add? peek? remove?

• O(log N), O(log N), O(log N)...?

• (good in theory, but the tree tends to become unbalanced to the right)

49-3

238

9

12

9

Unbalanced binary tree
queue.add(9);
queue.add(23);
queue.add(8);
queue.add(-3);
queue.add(49);
queue.add(12);
queue.remove();
queue.add(16);
queue.add(34);
queue.remove();
queue.remove();
queue.add(42);
queue.add(45);
queue.remove();

� Simulate these operations. What is the tree's shape?

� A tree that is unbalanced has a height close to N rather than log N,

which breaks the expected runtime of many operations.

49

23

12

16

34

42

45

10

Heaps

• heap: A complete binary tree with vertical ordering.

� complete tree: Every level is full except possibly the lowest level,

which must be filled from left to right

• (i.e., a node may not have any children until all possible siblings exist)

11

Heap ordering

• heap ordering: If P ≤ X for every element X with parent P.

� Parents' values are always smaller than those of their children.

� Implies that minimum element is always the root (a "min-heap").

• variation: "max-heap" stores largest element at root, reverses ordering

� Is a heap a BST? How are they related?

12

Which are min-heaps?

1530

8020

10

996040

8020

10

50 700

85

996040

8020

10

50 700

85 996040

8010

20

50 700

85

6040

8020

10

996040

8020

10

no no

no

no

13

24

7 3

30

10 40

30

80

2510

48

21

14

10 17

33

91828

11

22

3530

50

30

10 20

no

no

Which are max-heaps?

13

14

Heap height and runtime

• The height of a complete tree is always log N.

� How do we know this for sure?

• Because of this, if we implement a priority queue using a heap, we

can provide the following runtime guarantees:

� add: O(log N)

� peek: O(1)

� remove: O(log N)

n-node complete tree

of height h:

2h ≤ n ≤ 2h+1 – 1

h = log n

15

The add operation

• When an element is added to a heap, where should it go?

� Must insert a new node while maintaining heap properties.

� queue.add(15);

996040

8020

10

50 700

85

65

15

new node

16

The add operation

• When an element is added to a heap, it should be initially placed as

the rightmost leaf (to maintain the completeness property).

� But the heap ordering property becomes broken!

996040

8020

10

50 700

85

65

996040

8020

10

50 700

85

65 15

17

"Bubbling up" a node

• bubble up: To restore heap ordering, the newly added element is

shifted ("bubbled") up the tree until it reaches its proper place.

� Weiss: "percolate up" by swapping with its parent

� How many bubble-ups are necessary, at most?

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

18

Bubble-up exercise

• Draw the tree state of a min-heap after adding these elements:

� 6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2

1044225

619

2

76 50

11

55 88 20

19

The peek operation

• A peek on a min-heap is trivial to perform.

� because of heap properties, minimum element is always the root

� O(1) runtime

• Peek on a max-heap would be O(1) as well (return max, not min)

996040

8020

10

50 76

85

65

20

The remove operation

• When an element is removed from a heap, what should we do?

� The root is the node to remove. How do we alter the tree?

� queue.remove();

996040

8020

10

50 700

85

65

21

The remove operation

• When the root is removed from a heap, it should be initially

replaced by the rightmost leaf (to maintain completeness).

� But the heap ordering property becomes broken!

996040

8020

10

700 50

85

65

996040

8020

65

700 50

85

65

22

"Bubbling down" a node

• bubble down: To restore heap ordering, the new improper root is

shifted ("bubbled") down the tree until it reaches its proper place.

� Weiss: "percolate down" by swapping with its smaller child (why?)

� How many bubble-down are necessary, at most?

996040

8020

65

74 50

85 996050

8040

20

74 65

85

23

Bubble-down exercise

• Suppose we have the min-heap shown below.

• Show the state of the heap tree after remove has been called 3

times, and which elements are returned by the removal.

1044225

619

2

76 50

11

55 88 20

