CSE 373

Priority queue implementation using a heap
read: Weiss Ch. 6

slides created by Marty Stepp
http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Priority Queue ADT

e priority queue: A collection of ordered elements that provides fast
access to the minimum (or maximum) element.
" add adds in order
" peek returns minimum or "highest priority" value
" remove removes/returns minimum value

" isEmpty,clear,size,iterator 0O(1)

pg.add("if");
pg.add ("from") ;

v

v

Pg.remove () "by"

priority queue

Heaps

e heap: A complete binary tree with vertical ordering.

= complete tree: Every level is full except possibly the lowest level,
which must be filled from left to right

e (i.e., a node may not have any children until all possible siblings exist)

The add operation

e When an element is added to a heap, it should be initially placed as
the rightmost leaf (to maintain the completeness property).

= But the heap ordering property becomes broken!

"Bubbling up” a node

e bubble up: To restore heap ordering, the newly added element is
shifted ("bubbled") up the tree until it reaches its proper place.

= Weiss: "percolate up" by swapping with its parent
= How many bubble-ups are necessary, at most?

Bubble-up add exercise

e Draw the tree state of a min-heap after adding these elements:
= 6,50, 11, 25,42, 20, 104, 76, 19, 55, 88, 2

The peek operation

e A peek on a min-heap is trivial to perform.
= because of heap properties, minimum element is always the root
= O(1) runtime

e Peek on a max-heap would be O(1) as well (return max, not min)

19
29 0

9 (9 @) 6
SRTI®

The remove operation

e \When an element is removed from a heap, what should we do?
" Theroot is the node to remove. How do we alter the tree?

OB OXOXO
OXTI®

" gqueue.remove () ;

The remove operation

e \When the root is removed from a heap, it should be initially
replaced by the rightmost leaf (to maintain completeness).

= But the heap ordering property becomes broken!

"Bubbling down" a node

e bubble down: To restore heap ordering, the new improper root is
shifted ("bubbled") down the tree until it reaches its proper place.

= Weiss: "percolate down" by swapping with its smaller child (why?)
= How many bubble-down are necessary, at most?

Bubble-down exercise

e Suppose we have the min-heap shown below.

e Show the state of the heap tree after remove has been called 3
times, and which elements are returned by the removal.

11

Array heap implementation

e Though a heap is conceptually a binary tree,
since it is a complete tree, when implementing it
we actually can "cheat" and just use an array!

" index of root =1 (leave 0 empty to simplify the math)

= forany node natindexi:
e index of n.left =2ij
e index of n.right=2i+1
e parent index of n?

= This array representation
is elegant and efficient (O(1))
for common tree operations.

FGHIJI
6

789101112/

12

Implementing HeapPQ

e Let's implement an int priority queue using a min-heap array.

public class HeapIntPriorityQueue
implements IntPriorityQueue {
private int[] elements;
private int size;

// constructs a new empty priority queue
public HeapIntPriorityQueue () {

elements = new int[10];

size = 0;

13

Helper methods

e Since we will treat the array as a complete tree/heap, and walk
up/down between parents/children, these methods are helpful:

// helpers for navigating indexes up/down the tree

private 1nt parent (int index) { return index/2; }
private int leftChild(int index) { return index*2; }
private int rightChild(int index) { return index*2 + 1; }

private boolean hasParent (int index) { return index > 1; }
private boolean hasLeftChild(int index) {
return leftChild(index) <= size;
}
private boolean hasRightChild(int index) {
return rightChild(index) <= sizej;

}

private void swap(int[] a, int indexl, 1int index2) {
int temp = alindexl];
alindexl] = al[index2];
alindex2] = temp;

__ /

14

Implementing add

e Let's write the code to add an element to the heap:

public void add(int wvalue) {

Implementing add

// Adds the given value to this priority queue in order.

public void add(int value) {
elements[size + 1] = value; // add as rightmost leaf

// "bubble up" as necessary to fix ordering

int index = size + 1;
boolean found = false;
while (!found && hasParent (index)) {
int parent = parent (index);
if (elements[index] < elements[parent]) {

swap (elements, index, parent (index));
index = parent (index);

} else {
found = true; // found proper location; stop

16

Resizing a heap

e What if our array heap runs out of space?

We must enlarge it.

When enlarging hash sets, we needed to carefully rehash the data.

What must we do here?

(We can simply copy the data
into a larger array.)

g H|1]v]

/

17

Modified add code

// Adds the given value to this priority queue in order.
public void add(int value) {
// resize to enlarge the heap if necessary
if (size == elements.length - 1) {
elements = Arrays.copyOf (elements,
2 * elements.length);

18

Implementing peek

e Let's write code to retrieve the minimum element in the heap:

public int peek () {

19

Implementing peek

// Returns the minimum element in this priority queue.
// precondition: gqueue 1is not empty
public int peek () {

return elements|[1l];

Implementing remove

e Let's write code to remove the minimum element in the heap:

public int remove () {

Implementing remove

public int remove () { // precondition: queue 1s not empty
int result = elements[1l]; // last leaf -> root
elements[1l] = elements|[size];
size——;
int index = 1; // "bubble down" to fix ordering
boolean found = false;

while (!found && hasLeftChild(index)) {
int left = leftChild(index);
int right = rightChild(index);
int child = left;
if (hasRightChild(index) &&
elements[right] < elements[left]) {
child = right;
}
if (elements|[index] > elements[child]) {
swap (elements, index, child);
index = child;
} else {
found = true; // found proper location; stop
}
}

return result;

