
1

CSE 373

Priority queue implementation using a heap

read: Weiss Ch. 6

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Priority Queue ADT

• priority queue: A collection of ordered elements that provides fast

access to the minimum (or maximum) element.

� add adds in order

� peek returns minimum or "highest priority" value

� remove removes/returns minimum value

� isEmpty, clear, size, iterator O(1)

pq.add("if");

pq.add("from");

...

priority queue

"the"
"of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

pq.remove() "by"

3

Heaps

• heap: A complete binary tree with vertical ordering.

� complete tree: Every level is full except possibly the lowest level,

which must be filled from left to right

• (i.e., a node may not have any children until all possible siblings exist)

4

The add operation

• When an element is added to a heap, it should be initially placed as

the rightmost leaf (to maintain the completeness property).

� But the heap ordering property becomes broken!

996040

8020

10

50 700

85

65

996040

8020

10

50 700

85

65 15

5

"Bubbling up" a node

• bubble up: To restore heap ordering, the newly added element is

shifted ("bubbled") up the tree until it reaches its proper place.

� Weiss: "percolate up" by swapping with its parent

� How many bubble-ups are necessary, at most?

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

6

Bubble-up add exercise

• Draw the tree state of a min-heap after adding these elements:

� 6, 50, 11, 25, 42, 20, 104, 76, 19, 55, 88, 2

1044225

619

2

76 50

11

55 88 20

7

The peek operation

• A peek on a min-heap is trivial to perform.

� because of heap properties, minimum element is always the root

� O(1) runtime

• Peek on a max-heap would be O(1) as well (return max, not min)

996040

8020

10

50 76

85

65

8

The remove operation

• When an element is removed from a heap, what should we do?

� The root is the node to remove. How do we alter the tree?

� queue.remove();

996040

8020

10

50 700

85

65

9

The remove operation

• When the root is removed from a heap, it should be initially

replaced by the rightmost leaf (to maintain completeness).

� But the heap ordering property becomes broken!

996040

8020

10

700 50

85

65

996040

8020

65

700 50

85

65

10

"Bubbling down" a node

• bubble down: To restore heap ordering, the new improper root is

shifted ("bubbled") down the tree until it reaches its proper place.

� Weiss: "percolate down" by swapping with its smaller child (why?)

� How many bubble-down are necessary, at most?

996040

8020

65

74 50

85 996050

8040

20

74 65

85

11

Bubble-down exercise

• Suppose we have the min-heap shown below.

• Show the state of the heap tree after remove has been called 3

times, and which elements are returned by the removal.

1044225

619

2

76 50

11

55 88 20

12

Array heap implementation

• Though a heap is conceptually a binary tree,

since it is a complete tree, when implementing it

we actually can "cheat" and just use an array!

� index of root = 1 (leave 0 empty to simplify the math)

� for any node n at index i :

• index of n.left = 2i

• index of n.right = 2i + 1

• parent index of n?

� This array representation

is elegant and efficient (O(1))

for common tree operations.

13

Implementing HeapPQ

• Let's implement an int priority queue using a min-heap array.

public class HeapIntPriorityQueue
implements IntPriorityQueue {

private int[] elements;
private int size;

// constructs a new empty priority queue
public HeapIntPriorityQueue() {

elements = new int[10];
size = 0;

}

...
}

14

Helper methods

• Since we will treat the array as a complete tree/heap, and walk

up/down between parents/children, these methods are helpful:

// helpers for navigating indexes up/down the tree

private int parent(int index) { return index/2; }

private int leftChild(int index) { return index*2; }

private int rightChild(int index) { return index*2 + 1; }

private boolean hasParent(int index) { return index > 1; }

private boolean hasLeftChild(int index) {

return leftChild(index) <= size;

}

private boolean hasRightChild(int index) {

return rightChild(index) <= size;

}

private void swap(int[] a, int index1, int index2) {

int temp = a[index1];

a[index1] = a[index2];

a[index2] = temp;

}

15

Implementing add
• Let's write the code to add an element to the heap:

public void add(int value) {

...

}

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

16

Implementing add
// Adds the given value to this priority queue in order.

public void add(int value) {

elements[size + 1] = value; // add as rightmost leaf

// "bubble up" as necessary to fix ordering

int index = size + 1;

boolean found = false;

while (!found && hasParent(index)) {

int parent = parent(index);

if (elements[index] < elements[parent]) {

swap(elements, index, parent(index));

index = parent(index);

} else {

found = true; // found proper location; stop

}

}

size++;

}

17

Resizing a heap

• What if our array heap runs out of space?

� We must enlarge it.

� When enlarging hash sets, we needed to carefully rehash the data.

� What must we do here?

� (We can simply copy the data

into a larger array.)

18

Modified add code
// Adds the given value to this priority queue in order.

public void add(int value) {

// resize to enlarge the heap if necessary

if (size == elements.length - 1) {

elements = Arrays.copyOf(elements,

2 * elements.length);

}

...

}

19

Implementing peek
• Let's write code to retrieve the minimum element in the heap:

public int peek() {

...

}

992040

8015

10

50 700

85

65 60

20

Implementing peek
// Returns the minimum element in this priority queue.

// precondition: queue is not empty

public int peek() {

return elements[1];

}

21

Implementing remove
• Let's write code to remove the minimum element in the heap:

public int remove() {

...

}

996040

8020

10

700 50

85

65

996040

8020

65

700 50

85

65

22

Implementing remove
public int remove() { // precondition: queue is not empty

int result = elements[1]; // last leaf -> root
elements[1] = elements[size];
size--;
int index = 1; // "bubble down" to fix ordering
boolean found = false;
while (!found && hasLeftChild(index)) {

int left = leftChild(index);
int right = rightChild(index);
int child = left;
if (hasRightChild(index) &&

elements[right] < elements[left]) {
child = right;

}
if (elements[index] > elements[child]) {

swap(elements, index, child);
index = child;

} else {
found = true; // found proper location; stop

}
}
return result;

}

