
1

CSE 373

Advanced heap implementation; ordering/Comparator

read: Weiss Ch. 6

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Int PQ ADT interface

• Let's write our own implementation of a priority queue.

� To simplify the problem, we only store ints in our set for now.

� As is (usually) done in the Java Collection Framework, we will define

sets as an ADT by creating a Set interface.

� Core operations are: add, peek (at min), remove (min).

public interface IntPriorityQueue {

void add(int value);

void clear();

boolean isEmpty();

int peek(); // return min element

int remove(); // remove/return min element

int size();

}

3

Generic PQ ADT

• Let's modify our priority queue so it can store any type of data.

� As with past collections, we will use Java generics (a type parameter).

public interface PriorityQueue<E> {

void add(E value);

void clear();

boolean isEmpty();

E peek(); // return min element

E remove(); // remove/return min element

int size();

}

4

Generic HeapPQ class

• We can modify our heap priority class to use generics as usual...

public class HeapPriorityQueue<E>

implements PriorityQueue<E> {

private E[] elements;

private int size;

// constructs a new empty priority queue

public HeapPriorityQueue() {

elements = (E[]) new Object[10];

size = 0;

}

...

}

5

Problem: ordering elements
// Adds the given value to this priority queue in order.

public void add(E value) {

...

int index = size + 1;

boolean found = false;

while (!found && hasParent(index)) {

int parent = parent(index);

if (elements[index] < elements[parent]) { // error

swap(elements, index, parent(index));

index = parent(index);

} else {

found = true; // found proper location; stop

}

}

}

� Even changing the < to a compareTo call does not work.

• Java cannot be sure that type E has a compareTo method.

6

Comparing objects

• Heaps rely on being able to order their elements.

• Operators like < and > do not work with objects in Java.

� But we do think of some types as having an ordering (e.g. Dates).

� (In other languages, we can enable <, > with operator overloading.)

• natural ordering: Rules governing the relative placement of all

values of a given type.

� Implies a notion of equality (like equals) but also < and > .

� total ordering: All elements can be arranged in A ≤ B ≤ C ≤ ... order.

� The Comparable interface provides a natural ordering.

7

The Comparable interface

• The standard way for a Java class to define a comparison function

for its objects is to implement the Comparable interface.

public interface Comparable<T> {

public int compareTo(T other);

}

• A call of A.compareTo(B) should return:

a value < 0 if A comes "before" B in the ordering,

a value > 0 if A comes "after" B in the ordering,

or exactly 0 if A and B are considered "equal" in the ordering.

• Effective Java Tip #12: Consider implementing Comparable.

8

Bounded type parameters

<Type extends SuperType>

� An upper bound; accepts the given supertype or any of its subtypes.

� Works for multiple superclass/interfaces with & :

<Type extends ClassA & InterfaceB & InterfaceC & ...>

<Type super SuperType>

� A lower bound; accepts the given supertype or any of its supertypes.

• Example:
// can be instantiated with any animal type

public class Nest<T extends Animal> {

...

}

...

Nest<Bluebird> nest = new Nest<Bluebird>();

9

Corrected HeapPQ class
public class HeapPriorityQueue<E extends Comparable<E>>

implements PriorityQueue<E> {

private E[] elements;

private int size;

// constructs a new empty priority queue

public HeapPriorityQueue() {

elements = (E[]) new Object[10];

size = 0;

}

...

public void add(E value) {

...

while (...) {

if (elements[index].compareTo(

elements[parent]) < 0) {

swap(...);

}

}

}

}

10

Other heap operations

• Java collections support these methods in addition to the ones we

listed. How would we implement them in our heap PQ?

• (What would be each method's Big-Oh?)

� public boolean contains(E element)

• returns true if the priority queue contains the given value

� public void remove(E element)

• deletes an arbitrary element in the priority queue, if it is found

� public String toString()

• returns a string representation of the priority queue's elements

11

The contains operation

• Though there is ordering to the heap, it is not easy to take

advantage of the ordering to optimize contains.

� Why not?

� What elements must be examined

to see if the heap contains:

• 11?

• 19?

• 31?

� In practice we usually just loop

over the heap array linearly.

992040

8015

10

50 77

85

65 60

11

0

0

10

1

15

2

80

3

40

4

20

5

85

6

99

7

50

8

77

9

size

0

2

...

...

6065value

10index

12

Removing arbitrary element

• Similar to contains, removing an arbitrary element from a heap is

not easy to optimize because you must first find the value.

� Suppose the client wants to remove 40.

� How can we remove it safely

without disturbing the heap?

992040

8015

10

50 77

85

65 60

11

0

0

10

1

15

2

80

3

40

4

20

5

85

6

99

7

50

8

77

9

size

0

2

...

...

6065value

10index

13

Implementing remove
queue.remove(40);

� Step 1: Pretend 40's value is -∞ (very small)

• Bubble 40 all the way up to the root.

� Step 2: Perform a remove-min on 40,

which is currently the root.

• Do it the same as usual:

Swap up the rightmost leaf (60),

then bubble that leaf down. 992040

8015

10

50 77

85

65 60

11

0

0

10

1

15

2

80

3

40

4

20

5

85

6

99

7

50

8

77

9

size

0

2

...

...

6065value

10index

14

The toString operation

• A typical heap PQ implementation does "the simple thing" and

produces a toString with the elements in the heap order.

� e.g. toString on the heap shown would return

"[10, 15, 80, 40, 20, 85, 99, 50, 77, 65, 60]"

� Why not output the elements

in their sorted order?

• Wouldn't that make more

sense to the client?
992040

8015

10

50 77

85

65 60

11

0

0

10

1

15

2

80

3

40

4

20

5

85

6

99

7

50

8

77

9

size

0

2

...

...

6065value

10index

15

Ordering and Comparators

16

What's the "natural" order?
public class Rectangle implements Comparable<Rectangle> {

private int x, y, width, height;

public int compareTo(Rectangle other) {

// ...?

}

}

• What is the "natural ordering" of rectangles?

� By x, breaking ties by y?

� By width, breaking ties by height?

� By area? By perimeter?

• Do rectangles have any "natural" ordering?

� Might we want to arrange rectangles into some order anyway?

17

Comparator interface
public interface Comparator<T> {

public int compare(T first, T second);

}

• Interface Comparator is an external object that specifies a

comparison function over some other type of objects.

� Allows you to define multiple orderings for the same type.

� Allows you to define a specific ordering(s) for a type even if there is no

obvious "natural" ordering for that type.

� Allows you to externally define an ordering for a class that, for

whatever reason, you are not able to modify to make it Comparable:

• a class that is part of the Java class libraries

• a class that is final and can't be extended

• a class from another library or author, that you don't control

• ...

18

Comparator examples
public class RectangleAreaComparator

implements Comparator<Rectangle> {

// compare in ascending order by area (WxH)

public int compare(Rectangle r1, Rectangle r2) {

return r1.getArea() - r2.getArea();

}

}

public class RectangleXYComparator

implements Comparator<Rectangle> {

// compare by ascending x, break ties by y

public int compare(Rectangle r1, Rectangle r2) {

if (r1.getX() != r2.getX()) {

return r1.getX() - r2.getX();

} else {

return r1.getY() - r2.getY();

}

}

}

19

Using Comparators

•TreeSet, TreeMap , PriorityQueue can use Comparator:

Comparator<Rectangle> comp = new RectangleAreaComparator();

Set<Rectangle> set = new TreeSet<Rectangle>(comp);

Queue<Rectangle> pq = new PriorityQueue<Rectangle>(10,comp);

• Searching and sorting methods can accept Comparators.

Arrays.binarySearch(array, value, comparator)

Arrays.sort(array, comparator)

Collections.binarySearch(list, comparator)

Collections.max(collection, comparator)

Collections.min(collection, comparator)

Collections.sort(list, comparator)

• Methods are provided to reverse a Comparator's ordering:

public static Comparator Collections.reverseOrder()

public static Comparator Collections.reverseOrder(comparator)

20

PQ and Comparator

• Our heap priority queue currently relies on the Comparable

natural ordering of its elements:
public class HeapPriorityQueue<E extends Comparable<E>>

implements PriorityQueue<E> {

...

public HeapPriorityQueue() {...}

}

• To allow other orderings, we can add a constructor that accepts a

Comparator so clients can arrange elements in any order:

...

public HeapPriorityQueue(Comparator<E> comp) {...}

21

PQ Comparator exercise

• Write code that stores strings in a priority queue and reads them

back out in ascending order by length.

� If two strings are the same length, break the tie by ABC order.

Queue<String> pq = new PriorityQueue<String>(...);

pq.add("you");

pq.add("meet");

pq.add("madam");

pq.add("sir");

pq.add("hello");

pq.add("goodbye");

while (!pq.isEmpty()) {

System.out.print(pq.remove() + " ");

}

// sir you meet hello madam goodbye

22

PQ Comparator answer

• Use the following comparator class to organize the strings:

public class LengthComparator

implements Comparator<String> {

public int compare(String s1, String s2) {

if (s1.length() != s2.length()) {

// if lengths are unequal, compare by length

return s1.length() - s2.length();

} else {

// break ties by ABC order

return s1.compareTo(s2);

}

}

}

...

Queue<String> pq = new PriorityQueue<String>(100,

new LengthComparator());

23

d-heaps; heap sort

24

Generalization: d-Heaps

• d-heap: one where each node has d children (d ≥ 2)

� Can still be represented by an array.

� How does its height compare to that of a binary (d = 2) heap?

� Example, a 3-heap:

4

9654

32

1

8 1012

7

11

2 7 3 8 5 12 11 10 6 91

25

d-heap runtime

• What is the effect on runtime of using a d-heap?

� add: O(logd N) - fewer parents to examine; faster.

� peek: O(1)

� remove: O(d logd N) - must look at all d children each time; slower.

• Adding is slightly faster; removing is slightly slower.

4

9654

32

1

8 1012

7

11

2 7 3 8 5 12 11 10 6 91

26

Heap sort

• heap sort: An algorithm to sort an array of N elements by turning

the array into a heap, then calling remove N times.

� The elements will come out in sorted order.

� We can put them into a new sorted array.

� What is the runtime?

27

Heap sort implementation
public static void heapSort(int[] a) {

PriorityQueue<Integer> pq =

new HeapPriorityQueue<Integer>();

for (int n : a) {

pq.add(a);

}

for (int i = 0; i < a.length; i++) {

a[i] = pq.remove();

}

}

� This code is correct and runs in O(N log N) time but wastes memory.

� It makes an entire copy of the array a into the internal heap of the

priority queue.

� Can we perform a heap sort without making a copy of a?

28

Improving the code

• Idea: Treat a itself as a max-heap, whose data starts at 0 (not 1).

� a is not actually in heap order.

� But if you repeatedly "bubble down" each non-leaf node, starting from

the last one, you will eventually have a proper heap.

• Now that a is a valid max-heap:

� Call remove repeatedly until the heap is empty.

� But make it so that when an element is "removed", it is moved to the

end of the array instead of completely evicted from the array.

� When you are done, voila! The array is sorted.

29

Step 1: Build heap in-place

• "Bubble" down non-leaf nodes until the array is a max-heap:
� int[] a = {21, 66, 40, 10, 70, 81, 30, 22, 45, 95, 88, 38};

� Swap each node with its

larger child as needed.

307010

4066

21

22 45

81

95 88

12

21

0

66

1

40

2

10

3

70

4

81

5

30

6

22

7

45

8

95

9

size

0

2

...

...

3888value

10index

38

30

Build heap in-place answer
� 30: nothing to do

� 81: nothing to do

� 70: swap with 95

� 10: swap with 45

� 40: swap with 81

� 66: swap with 95, then 88

� 21: swap with 95, then 88, then 70

307045

8188

95

22 10

40

66 21

12

95

0

88

1

81

2

45

3

70

4

40

5

30

6

22

7

10

8

66

9

size

0

2

...

...

3821value

10index

38

31

Remove to sort

• Now that we have a max-heap, remove elements repeatedly until

we have a sorted array.

� Move each removed element

to the end, rather than tossing it.

307045

8188

95

22 10

40

66 21

12

95

0

88

1

81

2

45

3

70

4

40

5

30

6

22

7

10

8

66

9

size

0

2

...

...

3821value

10index

38

32

Remove to sort answer
� 95: move 38 up, swap with 88, 70, 66

� 88: move 21 up, swap with 81, 40

� 81: move 38 up, swap with 70, 66

� 70: move 10 up, swap with 66, 45, 22

� ...

� (Notice that after 4 removes,
the last 4 elements in the
array are sorted.
If we remove every
element, the entire
array will be sorted.)

303822

4045

66

10 70

21

81 88

12

66

0

45

1

40

2

22

3

38

4

21

5

30

6

10

7

70

8

81

9

size

0

2

...

...

9588value

10index

95

