CSE 373

Binary search trees; tree height and balance read: Weiss Ch. 4, section 4.1-4.3
slides created by Marty Stepp
http://www.cs.washington.edu/373/
© University of Washington, all rights reserved.

Trees

- tree: A directed, acyclic structure of linked nodes.
- directed : Has one-way links between nodes.
- acyclic: No path wraps back around to the same node twice.
- binary tree: One where each node has at most two children.
- Recursive definition: A tree is either:
- empty (null), or
- a root node that contains:
- data,
- a left subtree, and
- a right subtree.
-(The left and/or right subtree could be empty.)

Tree terminology

- node: an object containing a data value and left/right children
- root: topmost node of a tree
- leaf: a node that has no children
- branch: any internal node; neither the root nor a leaf
- parent: a node that refers to this one
- child: a node that this node refers to
- sibling: a node with a common
- subtree: the smaller tree of nodes on the left or right of the current node
- height: length of the longest path from the root to any node
- level or depth: length of the path from a root to a given node

Binary search trees

- binary search tree ("BST"): a binary tree where each non-empty node R has the following properties:
- every element of R's left subtree contains data "less than" R's data,
- every element of R's right subtree contains data "greater than" R's,
- R's left and right subtrees are also binary search trees.
- BSTs store their elements in sorted order, which is helpful for searching/sorting tasks.

BST examples

- Which of the trees shown are legal binary search trees?

A TreeSet class

```
public class TreeSet<E extends Comparable<E>>
            implements Set<E> {
    private TreeNode root; // null for an empty tree
    public TreeSet() {
        root = null;
    }
    private class TreeNode
        private E data;
        private TreeNode left;
        private TreeNode right;
    }
}
```


Searching a BST

- Describe an algorithm for searching a binary search tree.
- Try searching for the value 31 , then 6.
- What is the maximum number of nodes you would need to examine to perform any search?

Template for tree methods

```
public type name(parameters)
        name(root, parameters);
}
private type name(TreeNode node, parameters) {
}
```

- Tree methods are often implemented recursively
- with a public/private pair
- the private version accepts the root node to process

The contains method

// Returns whether this BST contains the given integer. public boolean contains (E value) \{ return contains(root, value); \}
private boolean contains(TreeNode node, E value) \{

```
    if (node == null) {
            return false; // base case: not found here
```

 \} else \{
 int comp \(=\) node.data.compareTo(value);
 if (comp == 0) \{
 return true; // base case: found here
 \} else if (comp > 0) \{
 return contains (node .left, value);
 \} else \{ // comp < 0
 return contains (node .right, value);
 \}
 \}

Adding to a BST

- Suppose we want to add new values to the BST below.
- Where should the value 14 be added?

-What is the general algorithm?

Adding exercise

- Draw what a binary search tree would look like if the following values were added to an initially empty tree in this order:
50
20
75
98
80
31
150
39
23
11
77

The $\mathrm{x}=$ change(x) pattern

- Methods that modify a tree should have the following pattern:
- input (parameter): old state of the node
- output (return): new state of the node

- In order to actually change the tree, you must reassign:

```
node = change(node, parameters);
node.left = change(node.left, parameters);
node.right = change(node.right, parameters);
overallRoot = change(overallRoot, parameters);
```


The add method

```
// Adds the given value to this BST in sorted order.
public void add(E value) {
    root = add(root, value);
}
private TreeNode add(TreeNode node, E value) {
    if (node == null) {
        node = new TreeNode(value);
    } else {
        int comp = node.data.compareTo(value);
        if (comp > 0) {
            node.left = add(node.left, value);
        } else if (comp < 0) {
            node.right = add(node.right, value);
        } // else a duplicate; do nothing
    }
return node;

\section*{Removing from a BST}
- How can we remove a value from a BST in such a way as to maintain proper BST ordering?
- tree.remove (73);
- tree.remove (29);
-tree.remove (87);
-tree.remove (55);


\section*{Cases for removal 1}
1. a leaf:
2. a node with a left child only:
3. a node with a right child only:

tree.remove (-3); tree.remove (55);
replace with null
replace with left child replace with right child

tree.remove(29);

\section*{Cases for removal 2}
4. a node with both children:
replace with min from right
- (replacing with max from left would also work)


\section*{The remove method}
```

// Removes the given value from this BST, if it exists.
public void remove(E value) {
root = remove(root, value);
}
private TreeNode remove(TreeNode node, E value) {
if (node == null) {
return null;
} else {
int comp = root.data.compareTo(value);
if (comp > 0) {
root.left = remove(root.left, value);
} else if (comp < 0) {
root.right = remove(root.right, value);
} else { // comp == 0; remove this node
if (root.right == null) {
return root.left; // replace w/ L
} else if (root.left == null) {
return root.right; // replace w/ R
} else {
// both children; replace w/ min from R
root.data = getMin(root.right);
root.right = remove(root.right, root.data);
}
}
}
return root;

```

\section*{Searching BSTs}
- The BSTs below contain the same elements.
- What orders are "better" for searching?



\section*{Trees and balance}
- balanced tree: One whose subtrees differ in height by at most 1 and are themselves balanced.
- A balanced tree of \(N\) nodes has a height of \(\sim \log _{2} N\).
- A very unbalanced tree can have a height close to \(N\).
- The runtime of adding to / searching a BST is closely related to height.
- Some tree collections (e.g. TreeSet) contain code to balance themselves as new nodes are added.


\section*{A balanced tree}
- Values: 2, 8, 14, 15, 18, 20, 21
- Order added: 15, 8, 2, 20, 21, 14, 18
- Different tree structures possible; depends on order inserted
- 7 nodes, expected height \(\log 7 \approx 3\)
- Perfectly balanced


\section*{Mostly balanced tree}
- Same Values: 2, 8, 14, 15, 18, 20, 21
- Order added: 20, 8, 21, 18, 14, 15, 2
- Somewhat balanced; height 5


\section*{Degenerate tree}
- Same Values: 2, 8, 14, 15, 18, 20, 21
- Order added: 2, 8, 14, 15, 18, 20, 21
- Totally unbalanced; height 7

(20)
(21)

\section*{Some height numbers}
- Observation: The shallower the BST the better.
- Average case height is \(\mathrm{O}(\log N)\)
- Worst case height is \(\mathrm{O}(N)\)
- Simple cases such as adding (1, 2, 3, ..., N), or the opposite order, lead to the worst case scenario: height \(O(N)\).
- For binary tree of height \(h\) :
- max \# of leaves: \(\quad 2^{h-1}\)
- max \# of nodes: \(\quad 2^{h}-1\)
- min \# of leaves: 1
- min \# of nodes: \(h\)


\section*{Calculating tree height}
- Height is max number of nodes in path from root to any leaf.
- height(null) = 0
- height(a leaf) = ?
- height( A ) = ?
- Hint: it's recursive!
- height(a leaf) = 1
- height(A) \(=1+\max (\) height(A.left), height(A.right))
```

