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Trees

• tree: A directed, acyclic structure of linked nodes.

– directed : Has one-way links between nodes.

– acyclic : No path wraps back around to the same node twice.

– binary tree: One where each node has at most two children.

• Recursive definition: A tree is either:

– empty (null), or

– a root node that contains:

• data, 

• a left subtree, and

• a right subtree.

– (The left and/or right

subtree could be empty.)
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Tree terminology

• node: an object containing a data value and left/right children

• root: topmost node of a tree

• leaf: a node that has no children

• branch: any internal node;  neither the root nor a leaf

• parent: a node that refers to this one

• child: a node that this node refers to

• sibling: a node with a common

• subtree: the smaller tree of nodes on

the left or right of the current node

• height: length of the longest path

from the root to any node

• level or depth: length of the path

from a root to a given node 76
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Binary search trees

• binary search tree ("BST"): a binary tree where each non-empty 

node R has the following properties:

� every element of R's left subtree contains data "less than" R's data,

� every element of R's right subtree contains data "greater than" R's,

� R's left and right subtrees are also binary search trees.

• BSTs store their elements in

sorted order, which is helpful

for searching/sorting tasks.
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BST examples

• Which of the trees shown are legal binary search trees?
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A TreeSet class
public class TreeSet<E extends Comparable<E>>

implements Set<E> {

private TreeNode root;   // null for an empty tree

public TreeSet() {

root = null;

}

...

private class TreeNode {

private E data;

private TreeNode left;

private TreeNode right;

...

}

}
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Searching a BST

• Describe an algorithm for searching a binary search tree.

� Try searching for the value 31, then 6.

• What is the maximum

number of nodes you

would need to examine

to perform any search?
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Template for tree methods

public type name(parameters) {

name(root, parameters);
}

private type name(TreeNode node, parameters) {
...

}

• Tree methods are often implemented recursively

– with a public/private pair

– the private version accepts the root node to process
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The contains method
// Returns whether this BST contains the given integer.

public boolean contains(E value) {

return contains(root, value);

}

private boolean contains(TreeNode node, E value) {

if (node == null) {

return false;   // base case: not found here

} else {

int comp = node.data.compareTo(value);

if (comp == 0) {

return true;    // base case: found here

} else if (comp > 0) {

return contains(node.left, value);

} else {   // comp < 0

return contains(node.right, value);

}

}

}
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Adding to a BST

• Suppose we want to add new values to the BST below.

� Where should the value 14 be added?

� Where should 3 be added?  7?

� If the tree is empty, where

should a new value be added?

• What is the general algorithm?
1910

115

8

4

2 7

25

22

root



11

Adding exercise

• Draw what a binary search tree would look like if the following 

values were added to an initially empty tree in this order:
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The x = change(x) pattern

• Methods that modify a tree should have the following pattern:

� input (parameter): old state of the node

� output (return): new state of the node

• In order to actually change the tree, you must reassign:

node        = change(node, parameters);

node.left = change(node.left, parameters);

node.right = change(node.right, parameters);

overallRoot = change(overallRoot, parameters);

your
method

node
before

node
after

parameter return
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The add method
// Adds the given value to this BST in sorted order.

public void add(E value) {

root = add(root, value);

}

private TreeNode add(TreeNode node, E value) {

if (node == null) {

node = new TreeNode(value);

} else {

int comp = node.data.compareTo(value);

if (comp > 0) {

node.left = add(node.left, value);

} else if (comp < 0) {

node.right = add(node.right, value);

} // else a duplicate; do nothing

}

return node;

}
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Removing from a BST

• How can we remove a value from a BST in such a way as to maintain 

proper BST ordering?

• tree.remove(73);

• tree.remove(29);

• tree.remove(87);

• tree.remove(55);
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Cases for removal 1
1. a leaf: replace with null

2. a node with a left child only: replace with left child

3. a node with a right child only: replace with right child
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Cases for removal 2

4. a node with both children: replace with min from right

• (replacing with max from left would also work)
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The remove method
// Removes the given value from this BST, if it exists.
public void remove(E value) {

root = remove(root, value);
}

private TreeNode remove(TreeNode node, E value) {
if (node == null) {

return null;
} else {

int comp = root.data.compareTo(value);
if (comp > 0) {

root.left = remove(root.left, value);
} else if (comp < 0) {

root.right = remove(root.right, value);
} else {  // comp == 0; remove this node

if (root.right == null) {
return root.left;    // replace w/ L

} else if (root.left == null) {
return root.right;   // replace w/ R

} else {
// both children; replace w/ min from R
root.data = getMin(root.right);
root.right = remove(root.right, root.data);

}
}

}
return root;

}
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Searching BSTs

• The BSTs below contain the same elements.

� What orders are "better" for searching?
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Trees and balance

• balanced tree: One whose subtrees differ in height by at most 1 and 

are themselves balanced.

� A balanced tree of N nodes has a height of ~ log2 N.

� A very unbalanced tree can have a height close to N.

� The runtime of adding to / searching a

BST is closely related to height.

� Some tree collections (e.g. TreeSet)

contain code to balance themselves

as new nodes are added.
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A balanced tree

• Values: 2, 8, 14, 15, 18, 20, 21

� Order added: 15, 8, 2, 20, 21, 14, 18

• Different tree structures possible; depends on order inserted

• 7 nodes, expected height log 7 ≈ 3

• Perfectly balanced
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Mostly balanced tree

• Same Values: 2, 8, 14, 15, 18, 20, 21

� Order added: 20, 8, 21, 18, 14, 15, 2

• Somewhat balanced; height 5
root
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Degenerate tree

• Same Values: 2, 8, 14, 15, 18, 20, 21

� Order added: 2, 8, 14, 15, 18, 20, 21

• Totally unbalanced; height 7
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Some height numbers

• Observation: The shallower the BST the better.

� Average case height is O(log N)

� Worst case height is O(N)

� Simple cases such as adding (1, 2, 3, ..., N), or the opposite order,  

lead to the worst case scenario: height O(N).

• For binary tree of height h:

� max # of leaves: 2h-1

� max # of nodes: 2h - 1

� min # of leaves: 1

� min # of nodes: h
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Calculating tree height

• Height is max number of nodes in path from root to any leaf.

� height(null) = 0

� height(a leaf) = ?

� height(A) = ?

� Hint: it's recursive!

� height(a leaf) = 1

� height(A) = 1 + max(

height(A.left), height(A.right))

A

A.left A.right


