CSE 373

Binary search trees; tree height and balance

read: Weiss Ch. 4, section 4.1 - 4.3

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Trees

- **tree**: A directed, acyclic structure of linked nodes.
 - *directed* : Has one-way links between nodes.
 - *acyclic* : No path wraps back around to the same node twice.
- binary tree: One where each node has at most two children.
- *Recursive definition:* A tree is either:
 - empty (null), or
 - a root node that contains:
 - data,
 - a left subtree, and
 - a **right** subtree.
 - –(The left and/or right subtree could be empty.)

Tree terminology

- node: an object containing a data value and left/right children
 - root: topmost node of a tree
 - leaf: a node that has no children
 - branch: any internal node; neither the root nor a leaf
 - parent: a node that refers to this one
 - child: a node that this node refers to
 - **sibling**: a node with a common
- **subtree**: the smaller tree of nodes on the left or right of the current node
- **height**: length of the longest path from the root to any node
- **level** or **depth**: length of the path from a root to a given node

Binary search trees

- **binary search tree** ("BST"): a binary tree where each non-empty node *R* has the following properties:
 - every element of R's left subtree contains data "less than" R's data,
 - every element of R's right subtree contains data "greater than" R's,
 - R's left and right subtrees are also binary search trees.
- BSTs store their elements in sorted order, which is helpful for searching/sorting tasks.

BST examples

• Which of the trees shown are legal binary search trees?

A TreeSet class

```
public class TreeSet<E extends Comparable<E>>
        implements Set<E> {
    private TreeNode root; // null for an empty tree
    public TreeSet() {
        root = null;
   private class TreeNode {
       private E data;
        private TreeNode left;
        private TreeNode right;
```

Searching a BST

- Describe an algorithm for searching a binary search tree.
 - Try searching for the value 31, then 6.

Template for tree methods

```
public type name(parameters) {
    name(root, parameters);
}
private type name(TreeNode node, parameters) {
    ...
}
```

- Tree methods are often implemented recursively
 - with a public/private pair
 - the private version accepts the root node to process

The contains method

```
// Returns whether this BST contains the given integer.
public boolean contains(E value) {
    return contains (root, value);
private boolean contains(TreeNode node, E value) {
    if (node == null) {
        return false; // base case: not found here
    } else {
        int comp = node.data.compareTo(value);
        if (comp == 0) {
            return true; // base case: found here
        } else if (comp > 0) {
            return contains (node.left, value);
        } else { // comp < 0
            return contains (node.right, value);
```

Adding to a BST

• Suppose we want to add new values to the BST below.

- Where should the value 14 be added?
- Where should 3 be added? 7?
- If the tree is empty, where should a new value be added?
- What is the general algorithm?

Adding exercise

• Draw what a binary search tree would look like if the following values were added to an initially empty tree in this order:

The x = change(x) pattern

- Methods that modify a tree should have the following pattern:
 - input (parameter): old state of the node
 - output (return): new state of the node

• In order to actually change the tree, you must reassign:

node	=	<pre>change(node, parameters);</pre>
node.left	=	<pre>change(node.left, parameters);</pre>
node.right	=	<pre>change(node.right, parameters);</pre>
overallRoot	=	<pre>change(overallRoot, parameters);</pre>

The add method

```
// Adds the given value to this BST in sorted order.
public void add(E value) {
    root = add(root, value);
private TreeNode add(TreeNode node, E value) {
    if (node == null) {
        node = new TreeNode(value);
    } else {
        int comp = node.data.compareTo(value);
        if (comp > 0) {
            node.left = add(node.left, value);
        } else if (comp < 0) {
            node.right = add(node.right, value);
        } // else a duplicate; do nothing
    }
```

return node;

Removing from a BST

- How can we remove a value from a BST in such a way as to maintain proper BST ordering?
 - tree.remove(73);
 - tree.remove(29);
 - tree.remove(87);
 - tree.remove(55);

Cases for removal 1

1. a **leaf**:

- 2. a node with a **left child only**:
- 3. a node with a **right child only**:

replace with null
replace with left child
replace with right child

tree.remove(29);

Cases for removal 2

- 4. a node with **both** children: replace with **min from right**
 - (replacing with max from left would also work)

The remove method

```
// Removes the given value from this BST, if it exists.
public void remove(E value) {
    root = remove(root, value);
private TreeNode remove(TreeNode node, E value) {
    if (node == null) {
        return null;
    } else {
        int comp = root.data.compareTo(value);
        if (comp > 0) {
            root.left = remove(root.left, value);
        } else if (comp < 0) {
            root.right = remove(root.right, value);
        } else { // comp == 0; remove this node
            if (root.right == null) {
                return root.left; // replace w/ L
            } else if (root.left == null) {
                return root.right; // replace w/ R
            } else {
                // both children; replace w/ min from R
                root.data = getMin(root.right);
                root.right = remove(root.right, root.data);
    return root;
```

Searching BSTs

Trees and balance

- balanced tree: One whose subtrees differ in height by at most 1 and are themselves balanced.
 - A balanced tree of N nodes has a height of ~ log₂ N.
 - A very unbalanced tree can have a height close to *N*.
 - The runtime of adding to / searching a BST is closely related to height.
 - Some tree collections (e.g. TreeSet) contain code to balance themselves as new nodes are added.

A balanced tree

- Values: 2, 8, 14, 15, 18, 20, 21
 - Order added: 15, 8, 2, 20, 21, 14, 18
- Different tree structures possible; depends on order inserted
- 7 nodes, expected height log 7 ≈ 3
- Perfectly balanced

Mostly balanced tree

- Same Values: 2, 8, 14, 15, 18, 20, 21
 - Order added: 20, 8, 21, 18, 14, 15, 2
- Somewhat balanced; height 5

Degenerate tree

- Same Values: 2, 8, 14, 15, 18, 20, 21
 - Order added: 2, 8, 14, 15, 18, 20, 21
- Totally unbalanced; height 7

Some height numbers

- Observation: The shallower the BST the better.
 - Average case height is O(log N)
 - Worst case height is O(N)
 - Simple cases such as adding (1, 2, 3, ..., N), or the opposite order, lead to the worst case scenario: height O(N).
- For binary tree of height *h*:
 - max # of leaves: 2^{h-1}
 - max # of nodes: 2^h 1
 - min # of leaves: 1
 - min # of nodes:

Calculating tree height

- Height is max number of nodes in path from root to any leaf.
 - height(null) = 0
 - height(a leaf) = ?
 - height(A) = ?
 - Hint: it's recursive!
 - height(a leaf) = 1
 - height(A) = 1 + max(height(A.left), height(A.right))

