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What is a graph?
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Graphs

• graph: A data structure containing:

� a set of vertices V,   (sometimes called nodes)

� a set of edges E, where an edge

represents a connection between 2 vertices.

• Graph G = (V, E)

• an edge is a pair (v, w) where v, w are in V

• the graph at right:

� V = {a, b, c, d}

� E = {(a, c), (b, c), (b, d), (c, d)}

• degree: number of edges touching a given vertex.

� at right: a=1, b=2, c=3, d=2
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Graph examples

• For each, what are the vertices and what are the edges?

� Web pages with links

� Methods in a program that call each other

� Road maps (e.g., Google maps)

� Airline routes

� Facebook friends

� Course pre-requisites

� Family trees

� Paths through a maze
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Paths

• path: A path from vertex a to b is a sequence of edges that can be 

followed starting from a to reach b.

� can be represented as vertices visited, or edges taken

� example, one path from V to Z: {b, h} or {V, X, Z}

� What are two paths from U to Y?

• path length: Number of vertices

or edges contained in the path.

• neighbor or adjacent: Two vertices

connected directly by an edge.

� example: V and X
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Reachability, connectedness

• reachable: Vertex a is reachable from b

if a path exists from a to b.

• connected: A graph is connected if every

vertex is reachable from any other.

� Is the graph at top right connected?

• strongly connected: When every vertex

has an edge to every other vertex.
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Loops and cycles

• cycle: A path that begins and ends at the same node.

� example: {b, g, f, c, a} or {V, X, Y, W, U, V}.

� example: {c, d, a} or {U, W, V, U}.

� acyclic graph: One that does

not contain any cycles.

• loop: An edge directly from

a node to itself.

� Many graphs don't allow loops.
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Weighted graphs

• weight: Cost associated with a given edge.

� Some graphs have weighted edges, and some are unweighted.

� Edges in an unweighted graph can be thought of as having equal 

weight (e.g. all 0, or all 1, etc.)

� Most graphs do not allow negative weights.

• example: graph of airline flights, weighted by miles between cities:
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Directed graphs

• directed graph ("digraph"): One where edges are one-way

connections between vertices.

� If graph is directed, a vertex has a separate in/out degree.

� A digraph can be weighted or unweighted.

� Is the graph below connected?  Why or why not?
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Digraph example

• Vertices = UW CSE courses  (incomplete list)

• Edge (a, b) = a is a prerequisite for b
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Linked Lists, Trees, Graphs

• A binary tree is a graph with some restrictions:

� The tree is an unweighted, directed, acyclic graph (DAG).

� Each node's in-degree is at most 1, and out-degree is at most 2.

� There is exactly one path from the root to every node.

• A linked list is also a graph:

� Unweighted DAG.

� In/out degree of at most 1 for all nodes.
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Searching for paths

• Searching for a path from one vertex to another:

� Sometimes, we just want any path (or want to know there is a path).

� Sometimes, we want to minimize path length (# of edges).

� Sometimes, we want to minimize path cost (sum of edge weights).

• What is the shortest path from MIA to SFO?

Which path has the minimum cost?
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Depth-first search

• depth-first search (DFS): Finds a path between two vertices by 

exploring each possible path as far as possible before backtracking.

� Often implemented recursively.

� Many graph algorithms involve visiting or marking vertices.

• Depth-first paths from a to all vertices (assuming ABC edge order):

� to b: {a, b}

� to c: {a, b, e, f, c}

� to d: {a, d}

� to e: {a, b, e}

� to f: {a, b, e, f}

� to g: {a, d, g}

� to h: {a, d, g, h}
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DFS pseudocode
function dfs(v1, v2):

dfs(v1, v2, { }).

function dfs(v1, v2, path):

path += v1.

mark v1 as visited.

if v1 is v2:

a path is found!

for each unvisited neighbor n of v1:
if dfs(n, v2, path) finds a path: a path is found!

path -= v1.   // path is not found.

• The path param above is used if you want to have the
path available as a list once you are done.
� Trace dfs(a, f) in the above graph.
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DFS observations

• discovery: DFS is guaranteed to

find a path if one exists.

• retrieval: It is easy to retrieve exactly

what the path is (the sequence of 

edges taken) if we find it

• optimality: not optimal.  DFS is guaranteed to find a path, not 

necessarily the best/shortest path

� Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.
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Breadth-first search

• breadth-first search (BFS): Finds a path between two nodes by 

taking one step down all paths and then immediately backtracking.

� Often implemented by maintaining a queue of vertices to visit.

• BFS always returns the shortest path (the one with the fewest 

edges) between the start and the end vertices.

� to b: {a, b}

� to c: {a, e, f, c}

� to d: {a, d}

� to e: {a, e}

� to f: {a, e, f}

� to g: {a, d, g}

� to h: {a, d, h}
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BFS pseudocode
function bfs(v1, v2):

queue := {v1}.

mark v1 as visited.

while queue is not empty:

v := queue.removeFirst().

if v is v2:

a path is found!

for each unvisited neighbor n of v:

mark n as visited.

queue.addLast(n).

// path is not found.

• Trace bfs(a, f) in the above graph.
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BFS observations

• optimality:

� always finds the shortest path (fewest edges).

� in unweighted graphs, finds optimal cost path.

� In weighted graphs, not always optimal cost.

• retrieval: harder to reconstruct the actual sequence of vertices or 

edges in the path once you find it

� conceptually, BFS is exploring many possible paths in parallel, so it's 

not easy to store a path array/list in progress

� solution: We can keep track of the path by storing predecessors for 

each vertex (each vertex can store a reference to a previous vertex).

• DFS uses less memory than BFS, easier to reconstruct the path once 

found; but DFS does not always find shortest path.  BFS does.
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DFS, BFS runtime

• What is the expected runtime of DFS and BFS, in terms of the 

number of vertices V and the number of edges E ?

• Answer: O(|V| + |E|)

� where |V| = number of vertices,  |E| = number of edges

� Must potentially visit every node and/or examine every edge once.

� why not O(|V| * |E|) ?

• What is the space complexity of each algorithm?

� (How much memory does each algorithm require?)
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BFS that finds path
function bfs(v1, v2):

queue := {v1}.

mark v1 as visited.

while queue is not empty:

v := queue.removeFirst().

if v is v2:

a path is found!  (reconstruct it by following .prev back to v1.)

for each unvisited neighbor n of v:

mark n as visited.  (set n.prev = v.)

queue.addLast(n).

// path is not found.

� By storing some kind of "previous" reference associated with each 

vertex, you can reconstruct your path back once you find v2.
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