CSE 373

Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9

slides created by Marty Stepp
http://www.cs.washington.edu/373/
© University of Washington, all rights reserved.

What is a graph?

Sydney

Graphs

- graph: A data structure containing:
- a set of vertices V, (sometimes called nodes)
- a set of edges E, where an edge represents a connection between 2 vertices.
- Graph $G=(V, E)$

- an edge is a pair (v, w) where v, w are in V
- the graph at right:
- $V=\{a, b, c, d\}$
- $E=\{(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{d}),(\mathrm{c}, \mathrm{d})\}$
- degree: number of edges touching a given vertex.
- at right: $a=1, b=2, c=3, d=2$

Graph examples

- For each, what are the vertices and what are the edges?
- Web pages with links
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Facebook friends
- Course pre-requisites
- Family trees
- Paths through a maze

Paths

- path: A path from vertex a to b is a sequence of edges that can be followed starting from a to reach b.
- can be represented as vertices visited, or edges taken
- example, one path from V to $Z:\{b, h\}$ or $\{V, X, Z\}$
- What are two paths from U to Y ?
- path length: Number of vertices or edges contained in the path.
- neighbor or adjacent: Two vertices connected directly by an edge.

Reachability, connectedness

- reachable: Vertex a is reachable from b if a path exists from a to b.
- connected: A graph is connected if every vertex is reachable from any other.
- Is the graph at top right connected?

- strongly connected: When every vertex has an edge to every other vertex.

Loops and cycles

- cycle: A path that begins and ends at the same node.
- example: $\{b, g, f, c, a\}$ or $\{V, X, Y, W, U, V\}$.
- example: $\{c, d, a\}$ or $\{U, W, V, U\}$.
- acyclic graph: One that does not contain any cycles.
- loop: An edge directly from a node to itself.
- Many graphs don't allow loops.

Weighted graphs

- weight: Cost associated with a given edge.
- Some graphs have weighted edges, and some are unweighted.
- Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0 , or all 1 , etc.)
- Most graphs do not allow negative weights.
- example: graph of airline flights, weighted by miles between cities:

Directed graphs

- directed graph ("digraph"): One where edges are one-way connections between vertices.
- If graph is directed, a vertex has a separate in/out degree.
- A digraph can be weighted or unweighted.
- Is the graph below connected? Why or why not?

Digraph example

- Vertices = UW CSE courses (incomplete list)
- Edge $(a, b)=a$ is a prerequisite for b

Linked Lists, Trees, Graphs

- A binary tree is a graph with some restrictions:
- The tree is an unweighted, directed, acyclic graph (DAG).
- Each node's in-degree is at most 1 , and out-degree is at most 2.
- There is exactly one path from the root to every node.
- A linked list is also a graph:
- Unweighted DAG.
- In/out degree of at most 1 for all nodes.

Searching for paths

- Searching for a path from one vertex to another:
- Sometimes, we just want any path (or want to know there is a path).
- Sometimes, we want to minimize path length (\# of edges).
- Sometimes, we want to minimize path cost (sum of edge weights).
- What is the shortest path from MIA to SFO?

Which path has the minimum cost?

Depth-first search

- depth-first search (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking.
- Often implemented recursively.
- Many graph algorithms involve visiting or marking vertices.
- Depth-first paths from a to all vertices (assuming ABC edge order):
- to b: \{a, b\}
- to $\mathrm{c}:\{\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{f}, \mathrm{c}\}$
- to $d:\{a, d\}$
- to e: $\{a, b, e\}$
- to f: $\{a, b, e, f\}$
- to $g:\{a, d, g\}$
- to h: \{a, d, g, h\}

DFS pseudocode

function $\operatorname{dfs}\left(v_{1}, v_{2}\right)$: $\operatorname{dfs}\left(v_{1}, v_{2},\{ \}\right)$.
function $\operatorname{dfs}\left(v_{1}, v_{2}, p a t h\right)$:
path $+=v_{1}$.
mark v_{1} as visited.

if v_{1} is v_{2} :
a path is found!
for each unvisited neighbor n of v_{1} :
if $\mathrm{dfs}\left(n, v_{2}, p a t h\right)$ finds a path: a path is found!
path $-=v_{1}$. // path is not found.

- The path param above is used if you want to have the path available as a list once you are done.
- Trace $\operatorname{dfs}(a, f)$ in the above graph.

DFS observations

- discovery: DFS is guaranteed to find \underline{a} path if one exists.
- retrieval: It is easy to retrieve exactly what the path is (the sequence of
 edges taken) if we find it
- optimality: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path
- Example: dfs(a, f) returns $\{a, d, c, f\}$ rather than $\{a, d, f\}$.

Breadth-first search

- breadth-first search (BFS): Finds a path between two nodes by taking one step down all paths and then immediately backtracking.
- Often implemented by maintaining a queue of vertices to visit.
- BFS always returns the shortest path (the one with the fewest edges) between the start and the end vertices.
- to $\mathrm{b}:\{\mathrm{a}, \mathrm{b}\}$
- to c: $\{\mathrm{a}, \mathrm{e}, \mathrm{f}, \mathrm{c}\}$
- to $d:\{a, d\}$
- to e: \{a, e\}
- to f: $\{\mathrm{a}, \mathrm{e}, \mathrm{f}\}$
- to g: $\{a, d, g\}$

- to h: \{a, d, h\}

function $\mathbf{b f s}\left(v_{1}, v_{2}\right)$:
queue := $\left\{v_{1}\right\}$. mark v_{1} as visited.
while queue is not empty:
$v:=q u e u e . r e m o v e F i r s t()$.

if v is v_{2} :
a path is found!
for each unvisited neighbor n of v :
mark n as visited.
queue.addLast(n).
// path is not found.

- Trace bfs (a, f) in the above graph.

BFS observations

- optimality:
- always finds the shortest path (fewest edges).
- in unweighted graphs, finds optimal cost path.
- In weighted graphs, not always optimal cost.

- retrieval: harder to reconstruct the actual sequence of vertices or edges in the path once you find it
- conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a path array/list in progress
- solution: We can keep track of the path by storing predecessors for each vertex (each vertex can store a reference to a previous vertex).
- DFS uses less memory than BFS, easier to reconstruct the path once found; but DFS does not always find shortest path. BFS does.

DFS, BFS runtime

- What is the expected runtime of DFS and BFS, in terms of the number of vertices V and the number of edges E ?
- Answer: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- where $|\mathrm{V}|=$ number of vertices, $|\mathrm{E}|$ = number of edges
- Must potentially visit every node and/or examine every edge once.
- why not $\mathrm{O}\left(|\mathrm{V}|^{*}|\mathrm{E}|\right)$?
- What is the space complexity of each algorithm?
- (How much memory does each algorithm require?)

BFS that finds path

function $\mathbf{b f s}\left(v_{1}, v_{2}\right)$:

$$
\begin{aligned}
& \text { queue }:=\left\{v_{1}\right\} . \\
& \text { mark } v_{1} \text { as visited. }
\end{aligned}
$$ while queue is not empty:

$v:=q u e u e . r e m o v e F i r s t()$.

if v is v_{2} :
a path is found! (reconstruct it by following .prev back to v_{1}.)
for each unvisited neighbor n of v :
mark n as visited. (set n.prev = v.)
queue.addLast(n).
// path is not found.

- By storing some kind of "previous" reference associated with each vertex, you can reconstruct your path back once you find v_{2}.

