
1

CSE 373

Graphs 1: Concepts,

Depth/Breadth-First Search

reading: Weiss Ch. 9

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

What is a graph?

Seattle

New York

L.A.

Tokyo

Sydney

Seoul 128

140

181

30

16

56

3

Graphs

• graph: A data structure containing:

� a set of vertices V, (sometimes called nodes)

� a set of edges E, where an edge

represents a connection between 2 vertices.

• Graph G = (V, E)

• an edge is a pair (v, w) where v, w are in V

• the graph at right:

� V = {a, b, c, d}

� E = {(a, c), (b, c), (b, d), (c, d)}

• degree: number of edges touching a given vertex.

� at right: a=1, b=2, c=3, d=2

a

c

b

d

4

Graph examples

• For each, what are the vertices and what are the edges?

� Web pages with links

� Methods in a program that call each other

� Road maps (e.g., Google maps)

� Airline routes

� Facebook friends

� Course pre-requisites

� Family trees

� Paths through a maze

5

Paths

• path: A path from vertex a to b is a sequence of edges that can be

followed starting from a to reach b.

� can be represented as vertices visited, or edges taken

� example, one path from V to Z: {b, h} or {V, X, Z}

� What are two paths from U to Y?

• path length: Number of vertices

or edges contained in the path.

• neighbor or adjacent: Two vertices

connected directly by an edge.

� example: V and X

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

6

Reachability, connectedness

• reachable: Vertex a is reachable from b

if a path exists from a to b.

• connected: A graph is connected if every

vertex is reachable from any other.

� Is the graph at top right connected?

• strongly connected: When every vertex

has an edge to every other vertex.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

a

c

b

d

a

c

b

d

e

7

Loops and cycles

• cycle: A path that begins and ends at the same node.

� example: {b, g, f, c, a} or {V, X, Y, W, U, V}.

� example: {c, d, a} or {U, W, V, U}.

� acyclic graph: One that does

not contain any cycles.

• loop: An edge directly from

a node to itself.

� Many graphs don't allow loops.

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

8

Weighted graphs

• weight: Cost associated with a given edge.

� Some graphs have weighted edges, and some are unweighted.

� Edges in an unweighted graph can be thought of as having equal

weight (e.g. all 0, or all 1, etc.)

� Most graphs do not allow negative weights.

• example: graph of airline flights, weighted by miles between cities:

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0

2

13871743

1843

1099
1120

1233
3

3
7

2555

142

9

Directed graphs

• directed graph ("digraph"): One where edges are one-way

connections between vertices.

� If graph is directed, a vertex has a separate in/out degree.

� A digraph can be weighted or unweighted.

� Is the graph below connected? Why or why not?

a

d

b

e

gf

c

10

Digraph example

• Vertices = UW CSE courses (incomplete list)

• Edge (a, b) = a is a prerequisite for b

142

143 154

140

311

312

331
351

333

341

344403
352

373

120

410

332
374

131

421431 440

415

413

417

414
444446

450

451

452

11

Linked Lists, Trees, Graphs

• A binary tree is a graph with some restrictions:

� The tree is an unweighted, directed, acyclic graph (DAG).

� Each node's in-degree is at most 1, and out-degree is at most 2.

� There is exactly one path from the root to every node.

• A linked list is also a graph:

� Unweighted DAG.

� In/out degree of at most 1 for all nodes.

F

B

A E

K

H

JG

A B DC

12

Searching for paths

• Searching for a path from one vertex to another:

� Sometimes, we just want any path (or want to know there is a path).

� Sometimes, we want to minimize path length (# of edges).

� Sometimes, we want to minimize path cost (sum of edge weights).

• What is the shortest path from MIA to SFO?

Which path has the minimum cost?

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

$50

$
8

0

$140
$170

$70

$100
$110

$120
$

6
0

$250

$200

$500

$130

13

Depth-first search

• depth-first search (DFS): Finds a path between two vertices by

exploring each possible path as far as possible before backtracking.

� Often implemented recursively.

� Many graph algorithms involve visiting or marking vertices.

• Depth-first paths from a to all vertices (assuming ABC edge order):

� to b: {a, b}

� to c: {a, b, e, f, c}

� to d: {a, d}

� to e: {a, b, e}

� to f: {a, b, e, f}

� to g: {a, d, g}

� to h: {a, d, g, h}

a

e

b c

hg

d f

14

DFS pseudocode
function dfs(v1, v2):

dfs(v1, v2, { }).

function dfs(v1, v2, path):

path += v1.

mark v1 as visited.

if v1 is v2:

a path is found!

for each unvisited neighbor n of v1:
if dfs(n, v2, path) finds a path: a path is found!

path -= v1. // path is not found.

• The path param above is used if you want to have the
path available as a list once you are done.
� Trace dfs(a, f) in the above graph.

a

e

b c

hg

d f

15

DFS observations

• discovery: DFS is guaranteed to

find a path if one exists.

• retrieval: It is easy to retrieve exactly

what the path is (the sequence of

edges taken) if we find it

• optimality: not optimal. DFS is guaranteed to find a path, not

necessarily the best/shortest path

� Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.

a

e

b c

hg

d f

16

Breadth-first search

• breadth-first search (BFS): Finds a path between two nodes by

taking one step down all paths and then immediately backtracking.

� Often implemented by maintaining a queue of vertices to visit.

• BFS always returns the shortest path (the one with the fewest

edges) between the start and the end vertices.

� to b: {a, b}

� to c: {a, e, f, c}

� to d: {a, d}

� to e: {a, e}

� to f: {a, e, f}

� to g: {a, d, g}

� to h: {a, d, h}

a

e

b c

hg

d f

17

BFS pseudocode
function bfs(v1, v2):

queue := {v1}.

mark v1 as visited.

while queue is not empty:

v := queue.removeFirst().

if v is v2:

a path is found!

for each unvisited neighbor n of v:

mark n as visited.

queue.addLast(n).

// path is not found.

• Trace bfs(a, f) in the above graph.

a

e

b c

hg

d f

18

BFS observations

• optimality:

� always finds the shortest path (fewest edges).

� in unweighted graphs, finds optimal cost path.

� In weighted graphs, not always optimal cost.

• retrieval: harder to reconstruct the actual sequence of vertices or

edges in the path once you find it

� conceptually, BFS is exploring many possible paths in parallel, so it's

not easy to store a path array/list in progress

� solution: We can keep track of the path by storing predecessors for

each vertex (each vertex can store a reference to a previous vertex).

• DFS uses less memory than BFS, easier to reconstruct the path once

found; but DFS does not always find shortest path. BFS does.

a

e

b c

hg

d f

19

DFS, BFS runtime

• What is the expected runtime of DFS and BFS, in terms of the

number of vertices V and the number of edges E ?

• Answer: O(|V| + |E|)

� where |V| = number of vertices, |E| = number of edges

� Must potentially visit every node and/or examine every edge once.

� why not O(|V| * |E|) ?

• What is the space complexity of each algorithm?

� (How much memory does each algorithm require?)

20

BFS that finds path
function bfs(v1, v2):

queue := {v1}.

mark v1 as visited.

while queue is not empty:

v := queue.removeFirst().

if v is v2:

a path is found! (reconstruct it by following .prev back to v1.)

for each unvisited neighbor n of v:

mark n as visited. (set n.prev = v.)

queue.addLast(n).

// path is not found.

� By storing some kind of "previous" reference associated with each

vertex, you can reconstruct your path back once you find v2.

a

e

b c

hg

d f

prev

