## CSE 373

## Graphs 2: Dijkstra's Algorithm reading: Weiss 9.3

slides created by Marty Stepp
http://www.cs.washington.edu/373/
© University of Washington, all rights reserved.

## Recall: DFS, BFS

- depth-first search (DFS): Explore each possible path as far as possible before backtracking.
- Often implemented recursively.
- DFS paths from $a$ to all vertices (assuming ABC edge order):
- to b: $\{\mathrm{a}, \mathrm{b}\}$
- to c: $\{a, b, e, f, c\}$
- to d: $\{a, d\}$
- to e: $\{a, b, e\}$
- to f: $\quad\{a, b, e, f\}$
- to g: $\{a, d, g\}$
- to h: $\{a, d, g, h\}$

- breadth-first search (BFS): Take one step down all paths and then immediately backtrack.
- A queue of vertices to visit.
- Always returns shortest path (one with fewest edges):
- to b: $\{a, b\}$
- to c: $\{a, e, f, c\}$
- to d: $\{a, d\}$
- to e: $\{a, e\}$
- to f: $\{a, \mathbf{e}, f\}$
- to g: $\{a, d, g\}$
- to h: $\{a, d, h\}$


## DFS/BFS and weight

- DFS and BFS do not consider edge weights.
- The minimum weight path is not necessarily the shortest path.
- Sometimes weight is more important:
- example: plane flight costs, network transmission (latency btwn servers)
- BFS(a,f) yields [a,e,f], but [a,d,g,h,f] has lower cost (6 vs. 9)



## Dijkstra's Algorithm

- Dijkstra's algorithm: Finds the minimum-weight path between a pair of vertices in a weighted directed graph.
- Solves the "one vertex, shortest path" problem in weighted graphs.
- Made by famous computer scientist Edsger Dijkstra (look him up!)
- basic algorithm concept: Create a table of information about the currently known best way to reach each vertex (cost, previous vertex), and improve it until it reaches the best solution.
- Example: In a graph where vertices are cities and weighted edges are roads between cities, Dijkstra's algorithm can be used to find the shortest route from one city to any other.


## Dijkstra pseudocode

function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex $v$ :
// Initialize vertex info
$v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost := 0 .
pqueue := \{all vertices, ordered by distance\}.
while pqueue is not empty:
$v:=$ remove vertex from pqueue with minimum cost.
mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : cost $:=v$ 's cost + weight of edge $(v, n)$.
if cost < $n$ 's cost:
$n$ 's cost := cost.
$n$ 's previous := $v$.
reconstruct path from $v_{2}$ back to $v_{1}$, following previous pointers.

## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex $v$ : // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost := 0 .
pqueue := \{all vertices, by distance $\}$.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n()$.
mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ :
cost $:=v$ 's cost + edge $(v, n)$ 's weight.
if cost < $n$ 's cost:
$n$ 's cost := cost.
$n$ 's previous := $v$.
reconstruct path from $v_{2}$ back to $v_{1}$, following previous pointers.

pqueue $=[\mathrm{A}: 0, \mathrm{~B}: \infty, \mathrm{C}: \infty, \mathrm{D}: \infty, \mathrm{E}: \infty, \mathrm{F}: \infty, \mathrm{G}: \infty]$


## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost :=0.
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n() . ~ / / ~ A ~$ mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : // B, D cost $:=v$ 's cost + edge $(v, n)$ 's weight.

$$
\begin{aligned}
\text { if cost < n's cost: } & \text { // B's cost }=0+2 \\
\text { n's cost }:=\text { cost. } & \text { // D's cost }=0+1
\end{aligned}
$$

$n$ 's previous := $v$.
reconstruct path from $v_{2}$ back to $v_{1}$,

pqueue $=[\mathrm{D}: 1, \mathrm{~B}: 2, \mathrm{C}: \infty, \mathrm{E}: \infty, \mathrm{F}: \infty, \mathrm{G}: \infty]$ following previous pointers.

## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost := 0 .
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
 mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : // C, E, F, G cost $:=v$ 's cost + edge $(v, n)$ 's weight.

$$
\begin{aligned}
& / / \text { C's cost }=1+2 \\
& / / \mathrm{E}^{\prime} \mathrm{s} \cos \mathrm{t}=1+2 \\
& / / \mathrm{F} \text { 's cost }=1+8 \\
& / / \mathrm{G}^{\prime} \cos \mathrm{cos}=1+4
\end{aligned}
$$

if cost < n's cost:
$n$ 's cost := cost.
$n$ 's previous := $v$.
reconstruct path from $v_{2}$ back to $v_{1}$,

pqueue = [B:2, C:3, E:3, G:5, F:9] following previous pointers.

## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost := 0 .
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n() . ~ / / ~ B ~$ mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : // E
cost $:=v$ 's cost + edge $(v, n)$ 's weight. // $2+10$
if cost < $n$ 's cost:
$n$ 's cost := cost.
$n$ 's previous :=v.
// $12>3$; false
// no costs change.
reconstruct path from $v_{2}$ back to $v_{1}$, following previous pointers.


## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost := 0 .
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n() . ~ / / ~ C ~$ mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : // F
cost $:=v$ 's cost + edge $(v, n$ )'s weight. // $3+5$

| if cost <n's cost: | $/ / 8<9$ |
| :--- | :--- |
| n's cost $:=$ cost. | $/ /$ F's cost $=8$ |
| $n ' s$ previous $:=v$. |  |

reconstruct path from $v_{2}$ back to $v_{1}$,

following previous pointers.

## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost := 0 .
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=$ pqueue.removeMin(). // E mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : // G
cost $:=v$ 's cost + edge $(v, n$ )'s weight. // $3+6$

$$
\begin{array}{ll}
\text { if cost < n's cost: } & \text { // } 9>5 \text {; false } \\
n ' s \text { cost }:=\text { cost. } & \text { // no costs change. } \\
n ' s \text { previous }:=v . &
\end{array}
$$

reconstruct path from $v_{2}$ back to $v_{1}$,

following previous pointers.

## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost :=0.
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n() . / / G$ mark $v$ as visited.
for each unvisited neighbor $n$ of $v: / / F$
cost $:=v$ 's cost + edge $(v, n$ )'s weight. // $5+1$

$$
\begin{aligned}
\text { if cost < n's cost: } & / / 6<8 \\
\text { n's cost }:=\text { cost. } & / / \text { F's cost }=6 . \\
\text { n's previous }:=v . &
\end{aligned}
$$

reconstruct path from $v_{2}$ back to $v_{1}$,
 following previous pointers.

## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost :=0.
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n() . / / F$ mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ : // none cost $:=v$ 's cost + edge $(v, n)$ 's weight.
if cost < $n$ 's cost:
n's cost := cost.
$n$ 's previous := $v$.
reconstruct path from $v_{2}$ back to $v_{1}$,



## Dijkstra example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$ :
for each vertex v: // Initialize vertex info $v$ 's cost := infinity.
$v$ 's previous := none.
$v_{1}$ 's cost :=0.
pqueue := \{all vertices,
by distance\}.
while pqueue is not empty:
$v:=p q u e u e . r e m o v e M i n()$.
mark $v$ as visited.
for each unvisited neighbor $n$ of $v$ :
cost $:=v$ 's cost + edge $(v, n)$ 's weight.
if cost < n's cost:
$n$ 's cost := cost.
$n$ 's previous := $v$.

// path = [A, D, G, F]
reconstruct path from $v_{2}$ back to $v_{1}$, following previous pointers.


## Algorithm properties

- Dijkstra's algorithm is a greedy algorithm:
- Make choices that currently seem the best.
- Locally optimal does not always mean globally optimal.
- It is correct because it maintains the following two properties:
- 1) for every marked vertex, the current recorded cost is the lowest cost to that vertex from the source vertex.
- 2) for every unmarked vertex $v$, its recorded distance is shortest path distance to $v$ from source vertex, considering only currently known vertices and $v$.


## Dijkstra's runtime

- For sparse graphs, (i.e. graphs with much less than $|V|^{2}$ edges) Dijkstra's is implemented most efficiently with a priority queue.
- initialization: $\mathrm{O}(|\mathrm{V}|)$
- while loop: O(|V|) times
- remove min-cost vertex from $p q$ : $\mathrm{O}(\log |V|)$
- potentially perform |E| updates on cost/previous
- update costs in pq: $\mathrm{O}(\log |\mathrm{V}|)$
- reconstruct path: O(|E|)
- Total runtime: $O(|V| \log |V|+|E| \log |V|)$
$\bullet=\mathbf{O}(|E| \log |V|)$, because $|V|=O(|E|)$ if graph is connected
- if a list is used instead of a $p q: O\left(\left|V^{2}\right|+|E|\right)=O\left(|V|^{2}\right)$


## Dijkstra exercise

- Use Dijkstra's algorithm to determine the lowest cost path from vertex $A$ to all of the other vertices in the graph.
- Keep track of previous vertices so that you can reconstruct the path.


