
1

CSE 373

Graphs 2: Dijkstra's Algorithm

reading: Weiss 9.3

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Recall: DFS, BFS
• depth-first search (DFS): Explore

each possible path as far as possible

before backtracking.

� Often implemented recursively.

� DFS paths from a to all vertices

(assuming ABC edge order):

• to b: {a, b}

• to c: {a, b, e, f, c}

• to d: {a, d}

• to e: {a, b, e}

• to f: {a, b, e, f}

• to g: {a, d, g}

• to h: {a, d, g, h}

• breadth-first search (BFS): Take

one step down all paths and then

immediately backtrack.

� A queue of vertices to visit.

� Always returns shortest path

(one with fewest edges):

• to b: {a, b}

• to c: {a, e, f, c}

• to d: {a, d}

• to e: {a, e}

• to f: {a, e, f}

• to g: {a, d, g}

• to h: {a, d, h}

a

e

b c

hg

d f

3

DFS/BFS and weight

• DFS and BFS do not consider edge weights.

� The minimum weight path is not necessarily the shortest path.

� Sometimes weight is more important:

• example: plane flight costs, network transmission (latency btwn servers)

• BFS(a,f) yields [a,e,f], but [a,d,g,h,f] has lower cost (6 vs. 9)

a

e

b c

hg

d f

4

7 2

4

2
12

1
4

2

5
1

4

Dijkstra's Algorithm

• Dijkstra's algorithm: Finds the minimum-weight path between a

pair of vertices in a weighted directed graph.

� Solves the "one vertex, shortest path" problem in weighted graphs.

� Made by famous computer scientist Edsger Dijkstra (look him up!)

� basic algorithm concept: Create a table of information about the

currently known best way to reach each vertex (cost, previous vertex),

and improve it until it reaches the best solution.

• Example: In a graph where vertices are cities and weighted edges

are roads between cities, Dijkstra's algorithm can be used to find the

shortest route from one city to any other.

5

Dijkstra pseudocode
function dijkstra(v1, v2):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v1's cost := 0.

pqueue := {all vertices, ordered by distance}.

while pqueue is not empty:

v := remove vertex from pqueue with minimum cost.

mark v as visited.

for each unvisited neighbor n of v:

cost := v's cost + weight of edge (v, n).

if cost < n's cost:

n's cost := cost.

n's previous := v.

reconstruct path from v2 back to v1, following previous pointers.

6

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin().

mark v as visited.

for each unvisited neighbor n of v:

cost := v's cost + edge(v, n)'s weight.

if cost < n's cost:

n's cost := cost.

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞

∞
∞

∞

∞ ∞

v1's distance := 0. all other distances := ∞.

pqueue = [A:0, B:∞, C:∞, D:∞, E:∞, F:∞, G:∞]

7

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // A

mark v as visited.

for each unvisited neighbor n of v: // B, D

cost := v's cost + edge(v, n)'s weight.

if cost < n's cost: // B's cost = 0 + 2

n's cost := cost. // D's cost = 0 + 1

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞
∞

1

∞ ∞

pqueue = [D:1, B:2, C:∞, E:∞, F:∞, G:∞]

8

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // D

mark v as visited.

for each unvisited neighbor n of v: // C, E, F, G

cost := v's cost + edge(v, n)'s weight.

// C's cost = 1 + 2

if cost < n's cost: // E's cost = 1 + 2

n's cost := cost. // F's cost = 1 + 8

n's previous := v. // G's cost = 1 + 4

reconstruct path from v
2

back to v
1
,

following previous pointers.

pqueue = [B:2, C:3, E:3, G:5, F:9]

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

9

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // B

mark v as visited.

for each unvisited neighbor n of v: // E

cost := v's cost + edge(v, n)'s weight. // 2 + 10

if cost < n's cost: // 12 > 3; false

n's cost := cost. // no costs change.

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

pqueue = [C:3, E:3, G:5, F:9]

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

10

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // C

mark v as visited.

for each unvisited neighbor n of v: // F

cost := v's cost + edge(v, n)'s weight. // 3 + 5

if cost < n's cost: // 8 < 9

n's cost := cost. // F's cost = 8

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

pqueue = [E:3, G:5, F:8]

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

11

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // E

mark v as visited.

for each unvisited neighbor n of v: // G

cost := v's cost + edge(v, n)'s weight. // 3 + 6

if cost < n's cost: // 9 > 5; false

n's cost := cost. // no costs change.

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

pqueue = [G:5, F:8]

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

12

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // G

mark v as visited.

for each unvisited neighbor n of v: // F

cost := v's cost + edge(v, n)'s weight. // 5 + 1

if cost < n's cost: // 6 < 8

n's cost := cost. // F's cost = 6.

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

pqueue = [F:6]

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

13

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin(). // F

mark v as visited.

for each unvisited neighbor n of v: // none

cost := v's cost + edge(v, n)'s weight.

if cost < n's cost: // no costs change.

n's cost := cost.

n's previous := v.

reconstruct path from v
2

back to v
1
,

following previous pointers.

pqueue = []

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

14

Dijkstra example

• dijkstra(A, F);

function dijkstra(v
1
, v

2
):

for each vertex v: // Initialize vertex info

v's cost := infinity.

v's previous := none.

v
1
's cost := 0.

pqueue := {all vertices,
by distance}.

while pqueue is not empty:

v := pqueue.removeMin().

mark v as visited.

for each unvisited neighbor n of v:

cost := v's cost + edge(v, n)'s weight.

if cost < n's cost:

n's cost := cost.

n's previous := v.

reconstruct path from v
2

back to v
1
, // path = [A, D, G, F]

following previous pointers.

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

15

Algorithm properties

• Dijkstra's algorithm is a greedy algorithm:

� Make choices that currently seem the best.

� Locally optimal does not always mean globally optimal.

• It is correct because it maintains the following two properties:

� 1) for every marked vertex, the current recorded cost is the lowest cost

to that vertex from the source vertex.

� 2) for every unmarked vertex v, its recorded distance is shortest path

distance to v from source vertex, considering only currently known

vertices and v.

16

Dijkstra's runtime

• For sparse graphs, (i.e. graphs with much less than |V|2 edges)

Dijkstra's is implemented most efficiently with a priority queue.

� initialization: O(|V|)

� while loop: O(|V|) times

• remove min-cost vertex from pq: O(log |V|)

• potentially perform |E| updates on cost/previous

• update costs in pq: O(log |V|)

� reconstruct path: O(|E|)

� Total runtime: O(|V| log |V| + |E| log |V|)

• = O(|E| log |V|), because |V| = O(|E|) if graph is connected

• if a list is used instead of a pq: O(|V2| + |E|) = O(|V|2)

17

Dijkstra exercise

• Use Dijkstra's algorithm to determine the lowest cost path from

vertex A to all of the other vertices in the graph.

� Keep track of previous vertices so that you can reconstruct the path.

A

G

F

B

E

C

D
20

10

50

40

20

80

50

20

30

20

90
H

10

10

10

