
1

CSE 373

Graphs 3: Implementation

reading: Weiss Ch. 9

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Implementing a graph

• If we wanted to program an actual data structure to represent a

graph, what information would we need to store?

� for each vertex? for each edge?

• What kinds of questions would we

want to be able to answer quickly:

� about a vertex?

� about edges / neighbors?

� about paths?

� about what edges exist in the graph?

• We'll explore three common graph implementation strategies:

� edge list, adjacency list, adjacency matrix

1

4

2

7

3

5 6

3

Edge list

• edge list: An unordered list of all edges in the graph.

� an array, array list, or linked list

• advantages:

� easy to loop/iterate over all edges

• disadvantages:

� hard to quickly tell if an edge

exists from vertex A to B

� hard to quickly find the degree

of a vertex (how many edges touch it)

(4, 7)

6

(5, 6)

70 1 2 3 4 5 8

(1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6) (6, 7)

1

4

2

7

3

5 6

4

Graph operations

• Using an edge list, how would you find:

� all neighbors of a given vertex?

� the degree of a given vertex?

� whether there is an edge from A to B?

� whether there are any loops (self-edges)?

• What is the Big-Oh of each operation?

(4, 7)

6

(5, 6)

70 1 2 3 4 5 8

(1, 2) (1, 4) (1, 7) (2, 3) 2, 5) (3, 6) (6, 7)

1

4

2

7

3

5 6

5

Adjacency matrix

• adjacency matrix: An N × N matrix where:

� the non-diagonal entry a[i,j] is the number of edges joining vertex i and

vertex j (or the weight of the edge joining vertex i and vertex j).

� the diagonal entry a[i,i] corresponds to the number of loops (self-

connecting edges) at vertex i (often disallowed).

� in an undirected graph, a[i,j] = a[j,i] for all i, j. (diagonally symmetric)

1

4

2

7

3

5 6

01110017

10101006

11000105

10000014

01000103

00101012

10010101

7654321

6

Graph operations

• Using an adjacency matrix, how would you find:

� all neighbors of a given vertex?

� the degree of a given vertex?

� whether there is an edge from A to B?

� whether there are any loops (self-edges)?

• What is the Big-Oh of each operation?

1

4

2

7

3

5 6

01110017

10101006

11000105

10000014

01000103

00101012

10010101

7654321

7

Adj matrix pros / cons

• advantages:

� fast to tell whether an edge exists between any two vertices i and j

(and to get its weight)

• disadvantage:

� consumes a lot of memory on sparse graphs (ones with few edges)

1

4

2

7

3

5 6

01110017

10101006

11000105

10000014

01000103

00101012

10010101

7654321

8

Adjacency list

• adjacency list: Stores edges as individual linked lists of references to

each vertex's neighbors.

� in unweighted graphs, the lists can simply be references to other

vertices and thus use little memory

� in undirected graphs, edge (i, j) is stored in both i's and j's lists

1

4

2

7

3

5 6

7

6

5

4

3

2

1 2 4 7

1 3 5

2 6

1 7

2 6 7

3 5 7

1 4 5 6

9

Graph operations

• Using an adjacency list, how would you find:

� all neighbors of a given vertex?

� the degree of a given vertex?

� whether there is an edge from A to B?

� whether there are any loops (self-edges)?

• What is the Big-Oh of each operation?

1

4

2

7

3

5 6

7

6

5

4

3

2

1 2 4 7

1 3 5

2 6

1 7

2 6 7

3 5 7

1 4 5 6

10

Adj list pros / cons

• advantages:

� new vertices can be added to the graph easily, and they can be

connected with existing nodes simply by adding elements to the

appropriate arrays;

� easy to find all neighbors of a given vertex (and its degree)

• disadvantages:

� determining whether an edge exists between two vertices requires

O(N) time, where N is the average number of edges per node

11

Weighted/directed graphs
• weighted:

� adj. list: store weight in each edge node

� adj. matrix: store weight in each matrix box

• directed:

� adj. list: edges appear only in start vertex's list

� adj. matrix: no longer diagonally symmetric

00360027

40002006

02000105

60000004

01000003

00106002

00050301

7654321

2:3 4:5

3:6 5:1

6:1

7:6

2:1 6:2

3:2 7:4

1:2 4:6 5:37

6

5

4

3

2

1

2 1

1

4

2

7

3

5 6

3 6

1
2

4

5

6 3

2

12

Runtime comparison

� |V| vertices, |E| edges

� no parallel edges

� no self-loops

Edge

List

Adjacency

List

Adjacency

Matrix

Memory usage |V| + |E| |V| + |E| |V|2

Find all neighbors of v |E| degree(v) |V|

Is v a neighbor of w? |E| degree(v) 1

add a vertex 1 1 |V|2

add an edge 1 1 1

remove a vertex |E| 1 |V|2

remove an edge |E| deg(v) 1

13

Representing vertices

• Not all graphs have vertices/edges that are easily "numbered".

� How do we represent lists or matrices of vertex/edge relationships?

� How do we quickly look up edges or vertices near a given vertex?

� edge list:

•List<Edge>

� adjacency list:

•Map<Vertex, List<Edge>> or

•Multimap<Vertex, Edge>

� adjacency matrix:

•Map<Vertex, Map<Vertex, Edge>> or

•Table<Vertex, Vertex, Edge>

ORD

PVD

MIA
DFW

SFO

LAX

LGA
HNL

$50

$
8

0

$140
$170

$70

$100
$110

$120

$
6

0

$250

$
2

0
0

$500

$130

14

A graph ADT

• As with other ADTs, we can create a Graph ADT interface:

public interface Graph<V, E> {

void addEdge(V v1, V v2, E e, int weight);

void addVertex(V v);

void clear();

boolean containsEdge(E e);

boolean containsEdge(V v1, V v2);

boolean containsVertex(V v);

int cost(List<V> path);

int degree(V v);

E edge(V v1, V v2);

int edgeCount();

Set<E> edges();

int edgeWeight(V v1, V v2);

15

A graph ADT, cont'd.

// public interface Graph<V, E> {

...

boolean isDirected();

boolean isEmpty();

boolean isReachable(V v1, V v2); // DFS

boolean isWeighted();

List<V> minimumWeightPath(V v); // Dijkstra's

Set<V> neighbors(V v);

int outDegree(V v);

void removeEdge(V v1, V v2);

void removeVertex(V v);

List<V> shortestPath(V v1, V v2); // BFS

String toString();

int vertexCount();

Set<V> vertices();

}

16

Info about vertices

• Information stored in each vertex (for internal use):

� can store various flags and fields for use by path search algorithms

public class Vertex<V> {

public int cost() {...}

public int number() {...}

public V previous() {...}

public boolean visited() {...}

public void setCost(int cost) {...}

public void setNumber(int number) {...}

public void setPrevious(V previous) {...}

public void setVisited(boolean visited) {...}

public void clear() {...} // reset dist,prev,visited

}

17

Info about edges

• Information stored in each edge (for internal use):

public class Edge<V, E> {

public boolean contains(V vertex) {...}

public E edge() {...}

public V end() {...}

public V start() {...}

public int weight() {...} // 1 if unweighted

}

