CSE 373

Graphs 3: Implementation reading: Weiss Ch. 9

slides created by Marty Stepp
http://www.cs.washington.edu/373/
© University of Washington, all rights reserved.

Implementing a graph

- If we wanted to program an actual data structure to represent a graph, what information would we need to store?
- for each vertex? for each edge?
- What kinds of questions would we want to be able to answer quickly:
- about a vertex?
- about edges / neighbors?

- about paths?
- about what edges exist in the graph?
- We'll explore three common graph implementation strategies:
- edge list, adjacency list, adjacency matrix

Edge list

- edge list: An unordered list of all edges in the graph.
- an array, array list, or linked list
- advantages:
- easy to loop/iterate over all edges
- disadvantages:
- hard to quickly tell if an edge
 exists from vertex A to B
- hard to quickly find the degree of a vertex (how many edges touch it)

0	1	2	3	4	5	6	7	8
$(1,2)$	$(1,4)$	$(1,7)$	$(2,3)$	$2,5)$	$(3,6)$	$(4,7)$	$(5,6)$	$(6,7)$

Graph operations

- Using an edge list, how would you find:
- all neighbors of a given vertex?
- the degree of a given vertex?
- whether there is an edge from A to B ?
- whether there are any loops (self-edges)?
- What is the Big-Oh of each operation?

0	1	2	3					
$(1,2)$	$(1,4)$	$(1,7)$	$(2,3)$	$2,5)$	$(3,6)$	$(4,7)$	$(5,6)$	$(6,7)$

Adjacency matrix

- adjacency matrix: An $N \times N$ matrix where:
- the non-diagonal entry $a[i, j]$ is the number of edges joining vertex i and vertex j (or the weight of the edge joining vertex i and vertex j).
- the diagonal entry $a[i, i]$ corresponds to the number of loops (selfconnecting edges) at vertex i (often disallowed).
- in an undirected graph, $a[i, j]=a[j, i]$ for all i, j. (diagonally symmetric)

Graph operations

- Using an adjacency matrix, how would you find:
- all neighbors of a given vertex?
- the degree of a given vertex?
- whether there is an edge from A to B ?
- whether there are any loops (self-edges)?
- What is the Big-Oh of each operation?

	1	2	3	4	5	6	7
1	0	1	0	1	0	0	1
2	1	0	1	0	1	0	0
3	0	1	0	0	0	1	0
4	1	0	0	0	0	0	1
5	0	1	0	0	0	1	1
6	0	0	1	0	1	0	1
7	1	0	0	1	1	1	0

Adj matrix pros / cons

- advantages:
- fast to tell whether an edge exists between any two vertices i and j (and to get its weight)
- disadvantage:
- consumes a lot of memory on sparse graphs (ones with few edges)

Adjacency list

- adjacency list: Stores edges as individual linked lists of references to each vertex's neighbors.
- in unweighted graphs, the lists can simply be references to other vertices and thus use little memory
- in undirected graphs, edge (i, j) is stored in both i 's and j 's lists

Graph operations

- Using an adjacency list, how would you find:
- all neighbors of a given vertex?
- the degree of a given vertex?
- whether there is an edge from A to B ?
- whether there are any loops (self-edges)?
- What is the Big-Oh of each operation?

Adj list pros / cons

- advantages:
- new vertices can be added to the graph easily, and they can be connected with existing nodes simply by adding elements to the appropriate arrays;
- easy to find all neighbors of a given vertex (and its degree)
- disadvantages:
- determining whether an edge exists between two vertices requires $O(N)$ time, where N is the average number of edges per node

Weighted/directed graphs

- weighted:
- adj. list: store weight in each edge node
- adj. matrix: store weight in each matrix box
- directed:
- adj. list: edges appear only in start vertex's list
- adj. matrix: no longer diagonally symmetric

	1	2	3	4	5	6	7
1	0	3	0	5	0	0	0
2	0	0	6	0	1	0	0
3	0	0	0	0	0	1	0
4	0	0	0	0	0	0	6
5	0	1	0	0	0	2	0
6	0	0	2	0	0	0	4
7	2	0	0	6	3	0	0

Runtime comparison

- $\|V\|$ vertices, $\|E\|$ edges no parallel edges no self-loops	Edge List	Adjacency List	Adjacency Matrix
Memory usage	$\|V\|+\|E\|$	$\|V\|+\|E\|$	$\|V\|^{2}$
Find all neighbors of \boldsymbol{v}	$\|E\|$	degree $\boldsymbol{v})$	$\|\boldsymbol{V}\|$
Is \boldsymbol{v} a neighbor of \boldsymbol{w} ?	$\|E\|$	degree($\boldsymbol{v})$	1
add a vertex	1	1	$\|V\|^{2}$
add an edge	1	1	1
remove a vertex	$\|E\|$	1	$\|V\|^{2}$
remove an edge	$\|E\|$	$\operatorname{deg}(\boldsymbol{v})$	1

Representing vertices

- Not all graphs have vertices/edges that are easily "numbered".
- How do we represent lists or matrices of vertex/edge relationships?
- How do we quickly look up edges or vertices near a given vertex?
- edge list:
- List<Edge>
- adjacency list:
- Map<Vertex, List<Edge>> or

- Multimap<Vertex, Edge>
- adjacency matrix:
- Map<Vertex, Map<Vertex, Edge>> or
- Table<Vertex, Vertex, Edge>

A graph ADT

- As with other ADTs, we can create a Graph ADT interface:

```
public interface Graph<V, E> {
    void addEdge(V v1, V v2, E e, int weight);
    void addVertex(V v);
    void clear();
    boolean containsEdge(E e);
    boolean containsEdge(V v1, V v2);
    boolean containsVertex(V v);
    int cost(List<V> path);
    int degree(V v);
    E edge(V v1, V v2);
    int edgeCount();
    Set<E> edges();
```

 int edgeweight (v v1, v v2),

A graph ADT, cont'd.

```
// public interface Graph<V, E> {
    boolean isDirected();
    boolean isEmpty();
    boolean isReachable(V v1, V v2); // DFS
    boolean isWeighted();
    List<V> minimumWeightPath(V v); // Dijkstra's
    Set<V> neighbors(V v);
    int outDegree(V v);
    void removeEdge(V v1, V v2);
    void removeVertex(V v);
    List<V> shortestPath(V v1, V v2); // BFS
    String toString();
    int vertexCount();
    Set<V> vertices();
}
```


Info about vertices

- Information stored in each vertex (for internal use):
- can store various flags and fields for use by path search algorithms

```
public class Vertex<V> {
    public int cost() {...}
    public int number() {...}
    public V previous() {...}
    public boolean visited() {...}
    public void setCost(int cost) {...}
    public void setNumber(int number) {...}
    public void setPrevious(V previous) {...}
    public void setVisited(boolean visited) {...}
    public void clear() {...} // reset dist,prev,visited
```


Info about edges

- Information stored in each edge (for internal use):

```
public class Edge<V, E> {
    public boolean contains(V vertex) {...}
    public E edge() {...}
    public V end() {...}
    public V start() {...}
    public int weight() {...} // 1 if unweighted
}
```

