CSE 373

Graphs 4: Topological Sort
reading: Weiss Ch. 9

slides created by Marty Stepp
http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Ordering a graph

e Suppose we have a directed acyclic graph (DAG) of courses, and we
want to find an order in which the courses can be taken.

= Must take all prereqgs before you can take a given course. Example:

e [142, 143, 140, 154, 341, 374, 331, 403, 311, 332, 344,
312, 351, 333,352, 373, 414, 410, 417, 413, 415]

e There might be more than one allowable ordering.

= How can we find a valid ordering of the vertices?

Topological Sort

e topological sort: Given a digraph G = (V, E), a total ordering of G's
vertices such that for every edge (v, w) in E, vertex v precedes w in
the ordering. Examples:

= determining the order to recalculate updated cells in a spreadsheet

* finding an order to recompile files that have dependencies
e (any problem of finding an order to perform tasks with dependencies)

Topo sort example

e How many valid topological sort orderings can you find for the
vertices in the graph below?

= [A,B,C,D,E F],[A B,C D,F, E],
[A,B,D,C,E, F],[A B,D,C,F, E],
[B,A,C,D,E, F],[B,A CD,F,E],
[B,A,D,C,E, F],[B,AD,C,F,E],
[B,C,A D,E, F],[B,C, A D,F,E],

What if there were a new vertex G unconnected to the others?

v

4

Topo sort: Algorithm 1

e function topologicalSort():

" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).
= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

Topo sort example

e function topologicalSort():
" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).

= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

" ordering ={B }

Topo sort example

e function topologicalSort():
" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).

= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

" ordering={B, C}

Topo sort example

e function topologicalSort():
" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).

= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

" ordering=1{B,C, A}

Topo sort example

e function topologicalSort():
" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).

= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

G,

" ordering={B,C,A,D}

Topo sort example

e function topologicalSort():
" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).

= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

G,

= ordering={B,C,A,D,F}

10

Topo sort example

e function topologicalSort():
" ordering :={}.
= Repeat until graph is empty:
e Find a vertex v with in-degree of 0 (no incoming edges).

= (If there is no such vertex, the graph cannot be sorted; stop.)

e Delete v and all of its
outgoing edges from the graph.

e ordering +=v .

= ordering={B,C,A,D,F,E}

11

Revised algorithm

e We don't want to literally delete vertices and edges from the graph
while trying to topological sort it; so let's revise the algorithm:

" map = {each vertex — its in-degree}.
= queue := {all vertices with in-degree = 0}.
" ordering :={}.
= Repeat until queue is empty:
e Dequeue the first vertex v from the queue.
e ordering +=v.
e Decrease the in-degree of all v's neighbors by 1 in the map.
e queue +={any neighbors whose in-degree is now 0}.

= |f all vertices are processed, success.
Otherwise, there is a cycle.

12

Topo sort example 2

e function topologicalSort():
= map :={each vertex — its in-degree}.
= gueue :={all vertices with in-degree = 0}.
= ordering :={}.
= Repeat until queue is empty:
e Dequeue the first vertex v from the queue.
e ordering +=v.

e Decrease the in-degree of all v's
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

" map .= { A=0, B=0, C=1, D=2, E=2, F=2}
= queue ={B,A}
= ordering :={}

13

Topo sort example 2

e function topologicalSort():
= map :={each vertex — its in-degree}.
= gueue :={all vertices with in-degree = 0}.
= ordering :={}.
= Repeat until queue is empty:
e Dequeue the first vertex v from the queue. //B
e ordering +=v.

e Decrease the in-degree of allv's //C,D
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

" map .= { A=0, B=0, C=0, D=1, E=2, F=2 }
= queue ={A,C}
= ordering :={B}

14

Topo sort example 2

e function topologicalSort():
= map :={each vertex — its in-degree}.
= gueue :={all vertices with in-degree = 0}.
= ordering :={}.
= Repeat until queue is empty:
e Dequeue the first vertex v from the queue. // A
e ordering +=v.

e Decrease the in-degree of all v's // D
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

" map :={ A=0, B=0, C=0, D=0, E=2, F=2 }
= queue ={C,D}
= ordering :={B,A}

15

Topo sort example 2

e function topologicalSort():
= map :={each vertex — its in-degree}.
= gueue :={all vertices with in-degree = 0}.
= ordering :={}.
= Repeat until queue is empty:
e Dequeue the first vertex v from the queue. //C
e ordering +=v.

e Decrease the in-degree of all v's //E, F
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

" map :={ A=0, B=0, C=0, D=0, E=1, F=1}
= queue ={D}
= ordering :={B,A C}

16

Topo sort example 2

e function topologicalSort():
= map :={each vertex — its in-degree}.
= gueue :={all vertices with in-degree = 0}.
= ordering :={}.
= Repeat until queue is empty:
e Dequeue the first vertex v from the queue. //D
e ordering +=v.

e Decrease the in-degree of all v's //F, E
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

" map :={ A=0, B=0, C=0, D=0, E=0, F=0}
= queue ={F,E}
= ordering :={B,A,C,D}

G

(®

17

Topo sort example 2

e function topologicalSort():

map := {each vertex — its in-degree}.
queue = {all vertices with in-degree = 0}.
ordering :={ }.
Repeat until queue is empty:
e Dequeue the first vertex v from the queue. //F
e ordering +=v.

e Decrease the in-degree of all v's // none
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

map :={ A=0, B=0, C=0, D=0, E=0, F=0}
gueue ={E}
ordering :={B,A,C,D,F}

G

18

Topo sort example 2

e function topologicalSort():

map := {each vertex — its in-degree}.
queue = {all vertices with in-degree = 0}.
ordering :={ }.
Repeat until queue is empty:
e Dequeue the first vertex v from the queue. //E
e ordering +=v.

e Decrease the in-degree of all v's // none
neighbors by 1 in the map.

e queue +={any neighbors whose in-degree is now 0}.

map :={ A=0, B=0, C=0, D=0, E=0, F=0}
queue ={}
ordering :={B,A,C,D,F E}

19

Topo sort runtime

e What is the runtime of our topological sort algorithm?
= (with an "adjacency map" graph internal representation)

= function topologicalSort():
e map = {each vertex — its in-degree}. // O(V)
e queue :={all vertices with in-degree = 0}.
e ordering :={}.

e Repeat until queue is empty: // O(V)
= Dequeue the first vertex v from the queue. // 0O(1)
= ordering +=v. // 0O(1)
= Decrease the in-degree of all v's // O(E) for all passes

neighbors by 1 in the map.
= queue += {any neighbors whose in-degree is now 0}.

= Qverall: O(V + E) ; essentially O(V) time on a sparse graph (fast!)

o

