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Ordering a graph

• Suppose we have a directed acyclic graph (DAG) of courses, and we 

want to find an order in which the courses can be taken.

� Must take all prereqs before you can take a given course.  Example:

• [142, 143, 140, 154, 341, 374, 331, 403, 311, 332, 344,

312, 351, 333, 352, 373, 414, 410, 417, 413, 415]

• There might be more than one allowable ordering.

� How can we find a valid ordering of the vertices?
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Topological Sort

• topological sort: Given a digraph G = (V, E), a total ordering of G's 

vertices such that for every edge (v, w) in E, vertex v precedes w in 

the ordering.  Examples:

� determining the order to recalculate updated cells in a spreadsheet

� finding an order to recompile files that have dependencies

• (any problem of finding an order to perform tasks with dependencies)
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Topo sort example

• How many valid topological sort orderings can you find for the 

vertices in the graph below?

� [A, B, C, D, E, F], [A, B, C, D, F, E],

� [A, B, D, C, E, F], [A, B, D, C, F, E],

� [B, A, C, D, E, F], [B, A, C, D, F, E],

� [B, A, D, C, E, F], [B, A, D, C, F, E],

� [B, C, A, D, E, F], [B, C, A, D, F, E],

� ...

� What if there were a new vertex G unconnected to the others?
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Topo sort: Algorithm 1

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .
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Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B }
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Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C }
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Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A }
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Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A, D }
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Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A, D, F }
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Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0  (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A, D, F, E }
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Revised algorithm

• We don't want to literally delete vertices and edges from the graph 

while trying to topological sort it; so let's revise the algorithm:

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.

• ordering += v.

• Decrease the in-degree of all v's neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� If all vertices are processed, success.

Otherwise, there is a cycle.
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.

• ordering += v.

• Decrease the in-degree of all v's

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=1, D=2, E=2, F=2 }

� queue := { B, A }

� ordering := { }
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.   // B

• ordering += v.

• Decrease the in-degree of all v's // C, D

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=1, E=2, F=2 }

� queue := { A, C }

� ordering := { B }
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.   // A

• ordering += v.

• Decrease the in-degree of all v's // D

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=2, F=2 }

� queue := { C, D }

� ordering := { B, A }
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.   // C

• ordering += v.

• Decrease the in-degree of all v's // E, F

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=1, F=1 }

� queue := { D }

� ordering := { B, A, C }
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.   // D

• ordering += v.

• Decrease the in-degree of all v's // F, E

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=0, F=0 }

� queue := { F, E }

� ordering := { B, A, C, D }
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.   // F

• ordering += v.

• Decrease the in-degree of all v's // none

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=0, F=0 }

� queue := { E }

� ordering := { B, A, C, D, F }
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Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.   // E

• ordering += v.

• Decrease the in-degree of all v's // none

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=0, F=0 }

� queue := { }

� ordering := { B, A, C, D, F, E }
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Topo sort runtime
• What is the runtime of our topological sort algorithm?

� (with an "adjacency map" graph internal representation)

� function topologicalSort():

• map := {each vertex → its in-degree}. // O(V)

• queue := {all vertices with in-degree = 0}.

• ordering := { }.

• Repeat until queue is empty: // O(V)

� Dequeue the first vertex v from the queue. //     O(1)

� ordering += v. //     O(1)

� Decrease the in-degree of all v's //     O(E) for all passes

neighbors by 1 in the map.

� queue += {any neighbors whose in-degree is now 0}.

� Overall: O(V + E) ;  essentially O(V) time on a sparse graph  (fast!)


