
1

CSE 373

Graphs 4: Topological Sort

reading: Weiss Ch. 9

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Ordering a graph

• Suppose we have a directed acyclic graph (DAG) of courses, and we

want to find an order in which the courses can be taken.

� Must take all prereqs before you can take a given course. Example:

• [142, 143, 140, 154, 341, 374, 331, 403, 311, 332, 344,

312, 351, 333, 352, 373, 414, 410, 417, 413, 415]

• There might be more than one allowable ordering.

� How can we find a valid ordering of the vertices?

142

143

154

140

311

312

331

351

333
341

344

403

352

373

410

332

374

415

413

417

414

3

Topological Sort

• topological sort: Given a digraph G = (V, E), a total ordering of G's

vertices such that for every edge (v, w) in E, vertex v precedes w in

the ordering. Examples:

� determining the order to recalculate updated cells in a spreadsheet

� finding an order to recompile files that have dependencies

• (any problem of finding an order to perform tasks with dependencies)

142

143

154

140

311

312

331

351

333
341

344

403

352

373

410

332

374

415

413

417

414

4

Topo sort example

• How many valid topological sort orderings can you find for the

vertices in the graph below?

� [A, B, C, D, E, F], [A, B, C, D, F, E],

� [A, B, D, C, E, F], [A, B, D, C, F, E],

� [B, A, C, D, E, F], [B, A, C, D, F, E],

� [B, A, D, C, E, F], [B, A, D, C, F, E],

� [B, C, A, D, E, F], [B, C, A, D, F, E],

� ...

� What if there were a new vertex G unconnected to the others?

C

A

F

D

B E

5

Topo sort: Algorithm 1

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

C

A

F

D

B E

6

Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B }

C

A

F

D

B E

7

Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C }

C

A

F

D

B E

8

Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A }

C

A

F

D

B E

9

Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A, D }

C

A

F

D

B E

10

Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A, D, F }

C

A

F

D

B E

11

Topo sort example

• function topologicalSort():

� ordering := { }.

� Repeat until graph is empty:

• Find a vertex v with in-degree of 0 (no incoming edges).

� (If there is no such vertex, the graph cannot be sorted; stop.)

• Delete v and all of its

outgoing edges from the graph.

• ordering += v .

� ordering = { B, C, A, D, F, E }

C

A

F

D

B E

12

Revised algorithm

• We don't want to literally delete vertices and edges from the graph

while trying to topological sort it; so let's revise the algorithm:

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.

• ordering += v.

• Decrease the in-degree of all v's neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� If all vertices are processed, success.

Otherwise, there is a cycle.

13

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue.

• ordering += v.

• Decrease the in-degree of all v's

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=1, D=2, E=2, F=2 }

� queue := { B, A }

� ordering := { }

C

A

F

D

B E

14

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue. // B

• ordering += v.

• Decrease the in-degree of all v's // C, D

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=1, E=2, F=2 }

� queue := { A, C }

� ordering := { B }

C

A

F

D

B E

15

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue. // A

• ordering += v.

• Decrease the in-degree of all v's // D

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=2, F=2 }

� queue := { C, D }

� ordering := { B, A }

C

A

F

D

B E

16

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue. // C

• ordering += v.

• Decrease the in-degree of all v's // E, F

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=1, F=1 }

� queue := { D }

� ordering := { B, A, C }

C

A

F

D

B E

17

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue. // D

• ordering += v.

• Decrease the in-degree of all v's // F, E

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=0, F=0 }

� queue := { F, E }

� ordering := { B, A, C, D }

C

A

F

D

B E

18

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue. // F

• ordering += v.

• Decrease the in-degree of all v's // none

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=0, F=0 }

� queue := { E }

� ordering := { B, A, C, D, F }

C

A

F

D

B E

19

Topo sort example 2
• function topologicalSort():

� map := {each vertex → its in-degree}.

� queue := {all vertices with in-degree = 0}.

� ordering := { }.

� Repeat until queue is empty:

• Dequeue the first vertex v from the queue. // E

• ordering += v.

• Decrease the in-degree of all v's // none

neighbors by 1 in the map.

• queue += {any neighbors whose in-degree is now 0}.

� map := { A=0, B=0, C=0, D=0, E=0, F=0 }

� queue := { }

� ordering := { B, A, C, D, F, E }

C

A

F

D

B E

20

Topo sort runtime
• What is the runtime of our topological sort algorithm?

� (with an "adjacency map" graph internal representation)

� function topologicalSort():

• map := {each vertex → its in-degree}. // O(V)

• queue := {all vertices with in-degree = 0}.

• ordering := { }.

• Repeat until queue is empty: // O(V)

� Dequeue the first vertex v from the queue. // O(1)

� ordering += v. // O(1)

� Decrease the in-degree of all v's // O(E) for all passes

neighbors by 1 in the map.

� queue += {any neighbors whose in-degree is now 0}.

� Overall: O(V + E) ; essentially O(V) time on a sparse graph (fast!)

