
1

CSE 373

Introduction to Parallel Algorithms

reading: Grossman

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Changing our assumptions

• So far most or all of your study of computer science has assumed

that only one thing happens at a time in a given program.

� sequential programming: Each statement executes in sequence.

• Removing this assumption creates challenges and opportunities:

� Programming: How can we divide work among threads of execution

and coordinate (synchronize) among them?

� Algorithms: How can activities in parallel speed-up a program?

• (more throughput: work done per unit time)

� Data structures: May need to support concurrent access (multiple

threads operating on data at the same time).

3

Brief arch. history

• CPU: Central Processing Unit. The brain of a computer.

� From ~1980-2005, CPU speed (GHz) got exponentially faster.

� Roughly doubled every 1.5 years ("Moore's Law").

• But we are reaching limits of classic CPU design.

� Increasing speeds further generates too much heat.

� Any single CPU over ~3-4 GHz crashes

or burns out in normal usage.

• Current work-around: Use multiple processors.

� Or, more recently, produce one CPU containing many processors in it.

� core: A processor-within-a-processor.

• A "multi-core" processor is one with several cores inside.

4

Using many cores

• What can you do with multiple CPUs (or cores)?

� Run multiple different programs at the same time (processes).

• Example: Core 1 runs Firefox; Core 2 runs iTunes; Core 3 runs Eclipse...

• Technically, programs receive "time slices" of attention from cores.

• Your OS (Windows, OSX, Linux) already does this for you.

• Do multiple things at once within the same program (threads).

� This will be our focus. More difficult; must be done manually.

� Requires rethinking everything about our algorithms, from how to

implement data-structure operations, to Big-Oh, to ...

• Writing correct/fast parallel code is much harder than sequential.

� Especially in common languages like Java and C.

5

Shared memory model

• Each thread has its own unshared call stack and local variables.

� Some objects are shared between multiple threads:

Any objects declared at a global scope or passed from one to another.

• Separate processes do not share memory with each other.

…

Thread1

…

… …

Unshared:

locals,

call stack

Shared:

global objects,

static fields

Thread2 Thread3

6

Parallel vs. concurrent

• parallel: Using multiple processing resources

(CPUs, cores) at once to solve a problem faster.

� Example: A sorting algorithm that has several

threads each sort part of the array.

• concurrent: Multiple execution flows (e.g. threads)

accessing a shared resource at the same time.

� Example: Many threads trying to make changes to

the same data structure (a global list, map, etc.).

• Many programmers confuse these two concepts.

� Threads are often used to implement both.

CPUs/cores

work

CPUs/cores

resource

7

Thread and Runnable

• To run some code in its own thread:

� Write a class that implements the Runnable interface.

• Its run method contains the code you want to execute.

� Construct a new Thread object, passing your runnable to it.

• Then start the thread.

� public interface Runnable { // implement this

public void run();

}

� public class Thread { // construct one

•public Thread(Runnable runnable)

•public void start()

8

Runnable example
public class MyRunnable implements Runnable {

public void run() {

// perform a task...

}

}

...

Thread thread = new Thread(new MyRunnable());

thread.start(); // returns immediately

• Sometimes done with an anonymous inner class:

new Thread(new Runnable() {

public void run() {

// perform a task...

}

}).start();

9

Waiting for a thread

• The call to Thread's start method returns immediately.

� Your code continues running in its own thread.

� Cannot assume that the other thread has finished running yet.

• If you want to be sure the thread is done, call join on it.

� Sometimes called a "fork/join" execution model.

Thread thread = new Thread(new MyRunnable());

thread.start();

System.out.println("Hello!"); // runs immediately

try {

thread.join(); // wait for thread to finish

} catch (InterruptedException ie) {} // never happens

System.out.println("Hello!"); // runs afterward

10

Algorithm example

• Write a method named sum that computes the total sum of all

elements in an array of integers.

� For now, just write a normal solution that doesn't use parallelism.

// normal sequential solution

public static int sum(int[] a) {

int total = 0;

for (int i = 0; i < a.length; i++) {

total += a[i];

}

return total;

}

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98

11

Parallelizing the algorithm

• Write a method named sum that computes the total sum of all

elements in an array of integers.

� How can we parallelize this algorithm if we have 2 CPUs/cores?

� Compute sum of each half of array in a thread.

� Add the two sums together.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98

sum1 = 22+18+12+-4+27+30+36+50 = 191 sum2 = 7+68+91+56+2+85+42+98 = 449

sum = sum1 + sum2 = 640

12

Initial steps

• First, write a method that sums a partial range of the array:

// normal sequential solution

public static int sumRange(int[] a, int min, int max) {

int total = 0;

for (int i = min; i < max; i++) {

total += a[i];

}

return total;

}

13

Runnable partial sum

• Now write a runnable class that can sum a partial array:

public class Summer implements Runnable {

private int[] a;

private int min, max, sum;

public Summer(int[] a, int min, int max) {

this.a = a;

this.min = min;

this.max = Math.min(max, a.length);

}

public int getSum() {

return sum;

}

public void run() {

sum = Sorting.sumRange(a, min, max);

}

}

14

Sum method w/ threads

• Now modify the overall sum method to run Summers in threads:

// Parallel version (two threads)

public static int sum(int[] a) {

Summer firstHalf = new Summer(a, 0, a.length/2);

Summer secondHalf = new Summer(a, a.length/2, a.length);

Thread thread1 = new Thread(firstHalf);

thread1.start();

Thread thread2 = new Thread(secondHalf);

thread2.start();

try {

thread1.join();

thread2.join();

} catch (InterruptedException ie) {}

return firstHalf.getSum() + secondHalf.getSum();

}

15

More than 2 threads
public static int sum(int[] a) { // many threads version

int threadCount = 5; // what number is best?
int len = (int) Math.ceil(1.0 * a.length / threadCount);
Summer[] summers = new Summer[threadCount];
Thread[] threads = new Thread[threadCount];
for (int i = 0; i < threadCount; i++) {

summers[i] = new Summer(a, i*len, (i+1)*len);
threads[i] = new Thread(summers[i]);
threads[i].start();

}
try {

for (Thread t : threads) {
t.join();

}
} catch (InterruptedException ie) {}

int total = 0;
for (Summer summer : summers) {

total += summer.getSum();
}
return total;

}

16

How many threads to use?

• You can find out how many cores/CPUs your machine has:

� int cores =

Runtime.getRuntime().availableProcessors();

• You'd think that would be the ideal number of threads.

� Sometimes yes, sometimes no.

� Your program does not always get all of the cores to use.

• Too few threads can be bad (core(s) sit idle).

• Too many threads can be bad (overhead of creating Threads).

� A bad ratio can slow the algorithm: e.g. 8 threads for 6 cores.

� If threads are lightweight to create, making tons of threads can be very

effective (e.g. make 1000 threads, set them all loose!).

• Java's Threads are too heavy-weight for this to be practical.

17

Parallel merge sort

• How can merge sort be parallelized if we have 2 CPUs/cores?

� Idea:

• Split array in half.

• Recursively sort each half in its own thread.

• Merge.

index 0 1 2 3 4 5 6 7

value 22 18 12 -4 58 7 31 42

22 18 12 -4 58 7 31 42

split

-4 7 12 18 22 31 42 58

merge

-4 12 18 22 7 31 42 58sort sort

18

Runnable merge sort

• Write a runnable class that can merge sort an array:

public class MergeSortRunner implements Runnable {

private int[] a;

public MergeSortRunner(int[] a) {

this.a = a;

}

public void run() {

mergeSort(a);

}

}

19

Merge sort w/ threads

• Now modify the merge sort method to sort in threads:

// Parallel version (two threads)

public static void parallelMergeSort(int[] a) {

if (a.length < 2) { return; }

// split array in half

int[] left = Arrays.copyOfRange(a, 0, a.length / 2);

int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

// sort each half (in parallel)

Thread lThread = new Thread(new MergeSortRunner(left));

Thread rThread = new Thread(new MergeSortRunner(right));

lThread.start();

rThread.start();

try {

lThread.join();

rThread.join();

} catch (InterruptedException ie) {}

// merge them back together

merge(left, right, a);

}

20

More than 2 threads?

• If we want to use more than 2 threads, it is tricky to code.

� Have to keep an array of threads/runnables.

� Tough to merge all the partial results together when done.

• A better way: divide-and-conquer parallelism

� Have each call spawn two threads, which spawn two threads, ...

� Each thread merges its two sub-threads; easier to manage

21

Modified Runnable

• Modify the runnable class to accept a level:

� Level 0 : base case; just do a sequential merge sort.

� Level K : spawn two threads at level K-1 to sort each half.

public class MergeSortRunner implements Runnable {

private int[] a;

private int level;

public MergeSortRunner(int[] a, int level) {

this.a = a;

this.level = level;

}

public void run() {

parallelMergeSort(a, level);

}

}

22

Merge sort w/ threads

• Now modify the merge sort method to use levels:

// Parallel version (many threads)
public static void parallelMergeSort(int[] a) {

parallelMergeSort(a, 3); // 3 levels => 2^3=8 threads
}

private static void parallelMergeSort(int[] a, int level) {
if (a.length < 2) { return; }
if (level == 0) { mergeSort(a); return; }

// split array in half
int[] left = Arrays.copyOfRange(a, 0, a.length/2);
int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

// sort each half (in parallel)
Thread lThread = new Thread(new MergeSortRunner(left, level-1));
Thread rThread = new Thread(new MergeSortRunner(right, level-1));
lThread.start();
rThread.start();
try {

lThread.join();
rThread.join();

} catch (InterruptedException ie) {}

// merge them back together
merge(left, right, a);

}

23

Amdahl's Law

• Amdahl's Law: The speedup that can be achieved by parallelizing a

program is limited by the sequential fraction of the program.

� Example: If 33% of the program must be performed sequentially, no

matter how many processors you use, you can only get a 3x speedup.

� An example of diminishing returns from adding more processors.

• "Nine couples can't make a baby in one month."

� Therefore, part of the trick becomes

learning how to minimize the portion

of the program that must be

performed sequentially.

• Making better parallel algorithms.

24

Map/Reduce

• map/reduce: A strategy for implementing parallel algorithms.

� map: A master worker takes the problem input, divides it into smaller

sub-problems, and distributes the sub-problems to workers (threads).

� reduce: The master worker collects sub-solutions from the workers and

combines them in some way to produce the overall answer.

• Our multi-threaded merge sort is an example of such an algorithm.

• Frameworks and tools have been written to perform map/reduce.

� MapReduce framework by Google

� Hadoop framework by Yahoo!

� related to the ideas of

Big Data and Cloud Computing

� also related to functional programming

25

Thread object methods

waits indefinitely, or for a given number of milliseconds, for the

thread to finish running

join()

join(ms)

puts a thread into runnable statestart()

instructs a thread to stop immediately (deprecated)stop()

gets/sets this thread's running priority. Possible values:

Thread.MIN_PRIORITY, NORM_PRIORITY, MAX_PRIORITY

getPriority()

setPriority(int)

gets/sets the name of this thread as a stringgetName()

setName(name)

thread's state. One of Thread.State.NEW, RUNNABLE,

BLOCKED, WAITING, TIMED_WAITING, or TERMINATED

getState()

stops the thread's current time sliceinterrupt()

returns true if the thread is in runnable stateisAlive()

DescriptionMethod name

26

Thread static methods

causes the current thread to wait for at least the given

number of ms before continuing

sleep(ms)

returns the current code's active threadgetCurrentThread()

temporarily pauses the current thread to let others runyield()

returns true if current thread has locked the given

object

holdsLock(obj)

returns stack trace data for all currently running threadsgetAllStackTraces()

causes current thread to print a stack tracedumpStack()

number of currently runnable/active threadsactiveCount()

DescriptionStatic method name

27

Sleeping a thread
try {

Thread.sleep(ms);

} catch (InterruptedException ie) {}

� Causes current thread to wait for the given number of milliseconds.

� If the program has other threads, they will be given a chance to run.

� Useful for writing code that checks for an update periodically.

// check for new network messages every 2 sec

while (!done) {

try {

Thread.sleep(2000);

} catch (InterruptedException ie) {}

myMessageQueue.read();

...

}

