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Numeric Data 

1.  binaryZeros 

Write a method named binaryZeros that accepts an integer n as a parameter and returns the number of 

zeros that occur in the binary representation of n.  For example, the call of binaryZeros(44) returns 3 

because the binary representation of 44 is 101100, which contains three zeros. 

2.  ones 

Given any integer 0 < n ≤ 10000 not divisible by 2 or 5, some multiple of n is a number which in decimal 

notation is a sequence of 1s.  Write a method named ones that accepts an integer n as a parameter and 

returns how many digits are in the smallest such multiple of n.  For example, the call of ones(3) returns 3 

because the smallest multiple of 3 that consists entirely of 1s is 111, which is 3 digits long.  Similarly, the 

call of ones(7) returns 6 because the smallest such multiple of 7 is 111111.  Note that the sequence of 1s 

could be very long, too long to store in a standard Java int or double. 

3.  reverseAndAdd 

Write a method named reverseAndAdd that accepts an integer parameter and repeatedly adds the integer 

to the reversal of itself (the integer constructed by reversing the order of the digits) until the result is a 

palindrome (an integer that is the same when the order of its digits is reversed).  Your method should print a 

single line of output containing the number of adds that were needed, followed by a space, followed by the 

palindrome that was computed.  The call of reverseAndAdd(195); should print:   4 9339   because: 

   195 (initial number) 
+  591  add #1 
   786 
+  687  add #2 
  1473 
+ 3741  add #3 
  5214  
+ 4125  add #4 
  9339 (resulting palindrome) 

It may help you to define one or more helper methods when solving this problem. 

Note that the resulting palindrome could be very long, too long to store in a standard Java int or double. 

Text Data 

4.  swapPairs 

Write a method named swapPairs that accepts a string as a parameter and returns that string with each pair 

of adjacent letters reversed.  If the string has an odd number of letters, the last letter is unchanged.  For 

example, the call of swapPairs("example") should return "xemalpe" and the call of swapPairs("hello 

there") should return "ehll ohtree". 

5.  crazyCaps 

Write a method named crazyCaps that accepts a string as a parameter and returns that string with the 

capitalization altered such that the even letters are all in lowercase and odd letters are all in uppercase.  Note 

that non-alphabetic characters do not count as letters.  For example, the call of crazyCaps("Hey!! 

THERE!") should return "hEy!! ThErE!". 

6.  mostCommon 

Write a method named mostCommon that accepts a string parameter and returns the word that occurs most 

frequently in the string.  Words are separated by one or more spaces.  Any duplicate words will occur 

consecutively.  If there is a tie, use the word that occurred earlier.  You may assume that the string contains 

at least one word.  For example, the following call will return "Kim" because the word Kim occurs 3 times: 

mostCommon("Ben Eric  Eric  Marty Kim Kim Kim  Jenny  Nancy Nancy  Nancy Paul  Paul") 
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Arrays 

7.  arrayMystery 

Write the final array contents when the following method is passed each array below: 

public static void mystery(int[] nums) { 

    for (int i = 0; i < nums.length - 1; i++) { 

        if (nums[i] > nums[i + 1]) { 

            nums[i + 1]++; 

        } 

    } 

} 

 

 

 

 

8.  numUnique 

Write a method named numUnique that accepts a sorted array of integers as a parameter and that returns the 

number of unique values in the array. The array is guaranteed to be in sorted order, which means that 

duplicates will be grouped together.  For example, if a variable called list stores the following values:  

{5, 7, 7, 7, 8, 22, 22, 23, 31, 35, 35, 40, 40, 40, 41} then the following call: 

numUnique(list) should return 9 because this list has 9 unique values (5, 7, 8, 22, 23, 31, 35, 40 and 41).  

It is possible that the list might not have any duplicates.  If list instead stored this sequence of values:   

{1, 2, 11, 17, 19, 20, 23, 24, 25, 26, 31, 34, 37, 40, 41} then a call on the method 

would return 15 because this list contains 15 different values. 

9. stretch 

Write a method named stretch that accepts an array of integers as a parameter and returns a new array 

twice as large as the original, replacing every integer from the original array with a pair of integers, each 

half the original.  If a number in the original array is odd, then the first number in the new pair should be 

one higher than the second so that the sum equals the original number.  For example, if a variable named 

list refers to an array storing the values {18, 7, 4, 24, 11}, the call of stretch(list) should 

return a new array containing {9, 9, 4, 3, 2, 2, 12, 12, 6, 5}.  (The number 18 is stretched into 

the pair 9, 9, the number 7 is stretched into 4, 3, the number 4 is stretched into 2, 2, the number 24 is 

stretched into 12, 12 and the number 11 is stretched into 6, 5.) 

10. rotateRight 

Write a method named rotateRight that accepts an array of integers as a parameter and rotates the values 

in the array to the right (i.e., forward in position) by one.  Each element moves right by one, except the last 

element, which moves to the front.  For example, if a variable named list refers to an array containing the 

values {3, 8, 19, 7}, the call of rotateRight(list) should modify it to store {7, 3, 8, 19}.  A 

subsequent call of rotateRight(list) would leave the array as follows: {19, 7, 3, 8} 

 

 

 

Array Final array contents 

{42} _______________________ 

{14, 7} _______________________ 

{7, 1, 3, 2, 0, 4} _______________________ 

{10, 8, 9, 5, 5} _______________________ 

{12, 11, 10, 10, 8, 7} _______________________ 
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Solutions 

1. 

public static int binaryZeros(int n) { 
    String binary = Integer.toString(n, 2); 
    int zeros = 0; 
    for (int i = 0; i < binary.length(); i++) { 
        if (binary.charAt(i) == '0') { 
            zeros++; 
        } 
    } 
    return zeros; 
} 

2.  

public static int ones(int n) { 
    BigInteger bn = BigInteger.valueOf(n); 
    BigInteger ones = BigInteger.ONE; 
    String onesStr = "1"; 
    while (!ones.mod(bn).equals(BigInteger.ZERO)) { 
        onesStr += "1"; 
        ones = new BigInteger(onesStr); 
    } 
    return onesStr.length(); 
} 

3.  

public static void reverseAndAdd(int n) { 
    BigInteger bi = BigInteger.valueOf(n); 
    int iter = 0; 
    while (!isPalindrome(bi)) { 
        BigInteger rev = reverseDigits(bi); 
        bi = bi.add(rev); 
        iter++; 
    } 
    System.out.println(iter + " " + bi); 
} 
 
private static BigInteger reverseDigits(BigInteger bi) { 
    StringBuilder sb = new StringBuilder(bi.toString()); 
    sb.reverse(); 
    return new BigInteger(sb.toString()); 
} 
private static boolean isPalindrome(BigInteger bi) { 
    String s = bi.toString(); 
    for (int i = 0; i < len / 2; i++) { 
        if (s.charAt(i) != s.charAt(s.length() - 1 - i)) { 
            return false; 
        } 
    } 
    return true; 
} 

4. 

public static String swapPairs(String s) { 
    String result = ""; 
    for (int i = 0; i < s.length() - 1; i += 2) { 
        result += s.charAt(i + 1); 
        result += s.charAt(i); 
    } 
    if (s.length() % 2 != 0) { 
        result += s.charAt(s.length() - 1); 
    } 
    return result; 
} 
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5. 

public static String crazyCaps(String s) { 
    String result = ""; 
    int letterCount = 0; 
    for (int i = 0; i < s.length(); i++) { 
        char c = s.charAt(i); 
        if (Character.isLetter(c)) { 
            if (letterCount % 2 == 0) { 
                result += Character.toLowerCase(c); 
            } else { 
                result += Character.toUpperCase(c); 
            } 
            letterCount++; 
        } else { 
            result += c; 
        } 
    } 
    return result; 
} 

6. 

public static String mostCommon(String s) { 
    Scanner words = new Scanner(s); 
    String mostWord = words.next(); 
    int most = 1; 
    String current = mostWord; 
    int count = 1; 
    while (words.hasNext()) { 
        String next = words.next(); 
        if (next.equals(current)) { 
            count++; 
            if (count > most) { 
                most = count; 
                mostWord = current; 
            } 
        } else { 
            current = next; 
            count = 1; 
        } 
    } 
    return mostWord; 
} 

7.  

Array Final array contents 
{42} 
{14, 7} 
{7, 1, 3, 2, 0, 4} 
{10, 8, 9, 5, 5} 
{12, 11, 10, 10, 8, 7} 

{42} 
{14, 8} 
{7, 2, 3, 3, 1, 4} 
{10, 9, 9, 6, 6} 
{12, 12, 11, 11, 9, 8} 

8. 

public static int numUnique(int[] list){ 
    if (list.length == 0) { 
        return 0; 
    } else { 
        int count = 1; 
        for (int i = 1; i < list.length; i++) { 
            if (list[i] != list[i - 1]) { 
                count++; 
            } 
        } 
        return count; 
    } 
} 
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9. 

public static int[] stretch(int[] list) { 
    int[] result = new int[2 * list.length]; 
    for (int i = 0; i < list.length; i++) { 
        result[2 * i] = list[i] / 2 + list[i] % 2; 
        result[2 * i + 1] = list[i] / 2; 
    } 
    return result; 
} 

10. 

public static void rotateRight(int[] list) { 
    int last = list[list.length - 1];             
    for (int j = list.length - 1; j > 0; j--) { 
        list[j] = list[j - 1]; 
    } 
    list[0] = last;   
} 
 


