
CSE 373 Section Handout #8
Sorting Algorithm Reference

bubble sort:
Repeatedly loop over the array, swapping neighboring
elements if they are out of relative order.

• O(N2) average, O(N) if input is sorted.
• Slow; performs lots of loops and swaps.

selection sort:
Repeatedly loop over the array, finding the smallest
element, and swapping it to the front.

• O(N2) in all cases
• Faster than bubble sort; makes N-1 swaps

insertion sort:
For increasing values of i, slide element i left until it is
sorted with respect to elements [0 .. i-1].

• O(N2) average, O(N) if input is sorted.
• Faster than selection, especially on sorted data.

shell sort:
Perform an insertion sort on every kth element for
decreasing values of k (e.g. k=8, 4, 2, 1)

• O(N1.25), O(N) if input is sorted.
• Generally faster than selection/insertion sort.

merge sort:
Split array in half, sort the halves, then merge the
sorted halves back together.

• O(N log N) in all cases.
• A fast, general purpose, "stable" sort.

quick sort:
Choose some element as the "pivot". Partition the
array into two groups: elements < pivot, and ≥ pivot.
Then recursively repeat the process on each group.

• O(N log N) average, O(N2) worst-case.
• extremely fast but not "stable"
• Choosing pivot poorly can hurt performance.

CSE 373 Section Handout #8
The problems on this page refer to the following arrays:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a) {29, 17, 3, 94, 46, 8, –4, 12}
b) {14, 25, 95, 0, 17, -2, 13, 56, 34}
c) { 6, 7, 4, 11, 8, 1, 10, 3, 5, 2}
d) { 7, 1, 6, 12, 18, 8, 4, 21, 2, 30, –1, 9, -3, 10, 11, 27, 14}

1. Bubble Sort Tracing
Trace the execution of the bubble sort algorithm over array a) above. Show each pass of the algorithm and
the state of the array after the sweep has been performed, until the array is sorted.

2. Selection Sort Tracing
Trace the execution of the selection sort algorithm over array b) above. Show each pass of the algorithm
and the state of the array after the pass has been performed, until the array is sorted.

3. Insertion Sort Tracing
Trace the execution of the insertion sort algorithm over array c) above. Show each pass of the algorithm
and the state of the array after the pass has been performed, until the array is sorted.

4. Shell Sort Tracing
Trace the execution of the shell sort algorithm over array d) above. Use gaps of N/2, N/4, ..., 2, 1. (In this
case, that comes out to gaps of 8, 4, 2, then 1.) Show each pass of the algorithm and the state of the array
after the pass has been performed, until the array is sorted.

For more practice later, try performing the algorithms over the other arrays and see the results.

CSE 373 Section Handout #8

5. dualSelectionSort
Write a method named dualSelectionSort that performs the selection sort algorithm on an array of
integers. Your code should modify the algorithm shown in class by grabbing two elements on each pass
through the array: the smallest and the largest, and move the smallest to the front and the largest to the end.
For example, if an array variable a stores the values {58, 64, 1, 72, 63, 27, 9, 14}, then making
the call of dualSelectionSort(a); would make the following passes over a to sort it:

Index 0 1 2 3 4 5 6 7
Value 58 64 1 72 63 27 9 14
Pass 0 1 64 58 14 63 27 9 72
Pass 1 1 9 58 14 63 27 64 72
Pass 2 1 9 14 58 27 63 64 72
Pass 3 1 9 14 27 58 63 64 72

(There is one tricky case to watch out for, which we will call the "max=i" case. Suppose your code has just
finished pass #i and has index variables min and max. Suppose the maximum value is the first one, the
value at index i. If you swap min with i, now when you swap max to the end, your code will mistakenly
grab the minimum out of index i and move it to the end. You can see this above on Pass 1, where 64 is the
max and it is in the first slot, index 1. The quick fix for this max=i case is to set max=min when max=i.)
As you write the method, consider the following questions:

• Do you expect your dual selection sort to be faster than a regular selection sort? Why or why not?
• What is the Big-Oh of your dual selection sort algorithm? How do you know?

6. shellSort2
Write a method named shellSort2 that performs the shell sort algorithm on an array of integers. Your
code should modify the algorithm shown in class by choosing a different set of "gaps" to use. Create an
internal array of descending gap values and sort the array by each gap value until it is fully sorted.
For example, if the array below is used with gaps of {5, 3, 1}, then the algorithm will perform the
following manipulations of the array:

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Value 27 63 17 72 33 58 14 9 26 61 41 8 1 22 3 12
Gap 5 12 8 1 22 3 27 14 9 26 33 41 63 17 72 61 58
Gap 3 12 3 1 14 8 26 17 9 27 22 41 61 33 72 63 58
Gap 1 1 3 8 9 12 14 17 22 26 27 33 41 58 61 63 72

• Do you notice a difference in runtime when you tweak the gaps used? What gaps work well?

7. priorityQueueSort
Write a method named priorityQueueSort that sorts an array of integers by adding all of the integers to
a PriorityQueue collection, then removing them all, which will cause them to come out in sorted order.
As you implement the method, consider the following questions:

• How does the runtime of this sort compare to that of the other algorithms learned so far?
• What is the Big-Oh of this sorting technique, in terms of runtime?

• How much memory is needed for this algorithm, beyond the memory used by the array passed in?

CSE 373 Section Handout #8
Solutions

1. bubble sort

index 0 1 2 3 4 5 6 7
original {29, 17, 3, 94, 46, 8, -4, 12}
sweep 1 {17, 3, 29, 46, 8, -4, 12, 94}
sweep 2 { 3, 17, 29, 8, -4, 12, 46, 94}
sweep 3 { 3, 17, 8, -4, 12, 29, 46, 94}
sweep 4 { 3, 8, -4, 12, 17, 29, 46, 94}
sweep 5 { 3, -4, 8, 12, 17, 29, 46, 94}
sweep 6 {-4, 3, 8, 12, 17, 29, 46, 94}

2. selection sort

index 0 1 2 3 4 5 6 7 8
original {14, 25, 95, 0, 17, -2, 13, 56, 34}
pass 1 {-2, 25, 95, 0, 17, 14, 13, 56, 34}
pass 2 {-2, 0, 95, 25, 17, 14, 13, 56, 34}
pass 3 {-2, 0, 13, 25, 17, 14, 95, 56, 34}
pass 4 {-2, 0, 13, 14, 17, 25, 95, 56, 34}
pass 5 {-2, 0, 13, 14, 17, 25, 95, 56, 34}
pass 6 {-2, 0, 13, 14, 17, 25, 95, 56, 34}
pass 7 {-2, 0, 13, 14, 17, 25, 34, 56, 95}
pass 8 {-2, 0, 13, 14, 17, 25, 34, 56, 95}

3. insertion sort

index 0 1 2 3 4 5 6 7 8 9
original { 6, 7, 4, 11, 8, 1, 10, 3, 5, 2}
pass 1 { 6, 7, 4, 11, 8, 1, 10, 3, 5, 2}
pass 2 { 4, 6, 7, 11, 8, 1, 10, 3, 5, 2}
pass 3 { 4, 6, 7, 11, 8, 1, 10, 3, 5, 2}
pass 4 { 4, 6, 7, 8, 11, 1, 10, 3, 5, 2}
pass 5 { 1, 4, 6, 7, 8, 11, 10, 3, 5, 2}
pass 6 { 1, 4, 6, 7, 8, 10, 11, 3, 5, 2}
pass 7 { 1, 3, 4, 6, 7, 8, 10, 11, 5, 2}
pass 8 { 1, 3, 4, 5, 6, 7, 8, 10, 11, 2}
pass 9 { 1, 2, 3, 4, 5, 6, 7, 8, 10, 11}

4. shell sort

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
original { 7, 1, 6, 12, 18, 8, 4, 21, 2, 30, -1, 9, -3, 10, 11, 27, 14}
gap=8 { 2, 1, -1, 9, -3, 8, 4, 21, 7, 30, 6, 12, 18, 10, 11, 27, 14}
gap=4 {-3, 1, -1, 9, 2, 8, 4, 12, 7, 10, 6, 21, 14, 30, 11, 27, 18}
gap=2 {-3, 1, -1, 8, 2, 9, 4, 10, 6, 12, 7, 21, 11, 27, 14, 30, 18}
gap=1 {-3, -1, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 14, 18, 21, 27, 30}

CSE 373 Section Handout #8
Solutions, continued

5.
public static void dualSelectionSort(int[] a) {
 for (int i = 0; i < a.length / 2; i++) {
 int min = i;
 int max = a.length - 1 - i;
 for (int j = i; j < a.length - i; j++) {
 if (a[j] < a[min]) {
 min = j;
 }
 if (a[j] > a[max]) { max = j; }
 }
 if (max == i) { // fixes the tricky max=i case
 max = min;
 }
 swap(a, i, min);
 swap(a, a.length - 1 - i, max);
 }
}

6.
public static void shellSort2(int[] a) {
 int[] gaps = {5, 3, 1};
 for (int gap : gaps) {
 for (int i = gap; i < a.length; i++) {
 int temp = a[i];
 int j = i;
 while (j >= gap && a[j - gap] > temp) {
 a[j] = a[j – gap];
 j -= gap;
 }
 a[j] = temp;
 }
 }
}

7.
public static void priorityQueueSort(int[] a) {
 Queue<Integer> pq = new PriorityQueue<Integer>(a.length + 10);
 for (int n : a) {
 pq.add(n);
 }
 for (int i = 0; i < a.length; i++) {
 a[i] = pq.remove();
 }
}

	CSE 373 Section Handout #8

