
CSE 373 Section Handout #9
Sorting Algorithm Reference

stooge sort:
Swap first/last if out of order, then stooge-sort the first
2/3, then last 2/3, then first 2/3 again.

• O(N2.7095...)
• Silly; slower than bubble sort.

heap sort:
Turn array into a max-heap, then remove-max in place
moving each root to the end until the array is sorted.

• O(N log N) in all cases.
• Slower than merge sort, faster than shell sort.

merge sort:
Split array in half, sort the halves, then merge the
sorted halves back together.

• O(N log N) in all cases; O(N) memory used.
• A fast, general purpose, "stable" sort.

quick sort:
Choose some element as the "pivot". Partition the
array into two groups: elements < pivot, and ≥ pivot.
Then recursively repeat the process on each group.

• O(N log N) average, O(N2) worst-case.
• Choosing pivot poorly can hurt performance.

bucket sort: (integers only)
Create array of tallies. Tally occurrences of int value i
in index [i]. Use tallies to regenerate sorted elements.

• O(M + N) for N ints in range [0 .. M); ~O(N)
• Very fast! But works only on fixed-range ints.

radix sort: (integers/strings)
Perform a pass of bucket sort for each digit / character,
from least to most significant digit.

• O(N) assuming number of digits is small
• Very fast! Works with ints and strings.

CSE 373 Section Handout #9
Graph Reference

graph: A data structure containing:
 a set of vertices V, (sometimes called nodes)
 a set of edges E, where an edge#represents a connection between 2 vertices.

degree: number of edges touching a given vertex.

path: A path from vertex a to b is a sequence of edges that can be followed starting
from a to reach b.
 can be represented as vertices visited, or edges taken

path length: Number of vertices or edges contained in the path.

neighbor or adjacent: Two vertices connected directly by an edge.

reachable: Vertex a is reachable from b if a path exists from a to b.

connected: A graph is connected if every vertex is reachable from any other.
 strongly connected: When every vertex has an edge to every other vertex.

cycle: A path that begins and ends at the same node.
 acyclic graph: One that does not contain any cycles.
 loop: An edge directly from a node to itself.

weight: Cost associated with a given edge.
 weighted graph: One where edges have weights (see graph below).

directed graph ("digraph"): One where edges are one-way connections.

depth-first search (DFS): Finds a path between two vertices by exploring each possible path as far as possible
before backtracking.
 Often implemented recursively.

breadth-first search (BFS): Finds a path between two nodes by taking one step down all paths and then
immediately backtracking.
 Often implemented by maintaining a deque of vertices to visit.

CSE 373 Section Handout #9
The problems on this page refer to the following arrays:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a) {59, 15, 6, 28, 32, -7, 41, 8}
b) {19, 27, 6, 34, 46, 8, –4, 13, 51, 11}
c) {315, 88, 21, 149, 308, 6, 708, 411, 79, 116, 265, 400}

1. Merge Sort Tracing
Trace the execution of the merge sort algorithm over array a) above. Show each pass of the algorithm and
the splitting/merging of the array, until the array is sorted.

2. Quick Sort Tracing
Trace the execution of the quick sort algorithm over array b) above. Use the first element as the pivot.
Show each pass of the algorithm, with the pivot selection and partitioning, and the state of the array as/after
the partition is performed, until the array is sorted. You do not need to show partitioning calls over a single
element, because there is nothing to do.

3. Radix Sort Tracing
Trace the execution of the radix sort algorithm over array c) above. Show each pass of the algorithm and its
array of tallies, then show the state of the array after the pass has been performed, until the array is sorted.

For more practice later, try performing the algorithms over the other arrays and see the results.

CSE 373 Section Handout #9

4. graph properties
For the graphs shown below, answer the following questions: (sorry for the crappy graph drawings!)

a) Which graphs are directed, and which are undirected?
b) Which graphs are weighted, and which are unweighted?
c) Which graphs are connected, and which are not? Is any graph strongly connected?
d) Which graphs are cyclic, and which are acyclic?
e) What is the degree of each vertex? (If it is directed, what is the in-degree and out-degree?)
Graph 1:
A --► B ◄-- C
| | ▲
| | |
▼ ▼ |
D ◄-- E --► F
| ▲ ▲
| | |
▼ | |
G ◄-► H ◄-- I

Graph 2:
A B----C
| |_
| | _
D-----E F

Graph 3:
A ◄--► B ◄-- C
| ▲
▼ |
D ◄--► E

Graph 4:
 3
 A---B
 | /
 5| /2
 |/
 C D---E
 8

Graph 5:
A-----B
|\ /|
| \ / |
| + |
| / \ |
|/ \|
C-----D

Graph 6:

 / 8 \
 / 4 1 ▼ 7
 A ◄---- B ◄---► C ----► D
 ▲ ▲ | ▲
1| 2| |5 |
 | | | 1/
 ▼ 2 ▼ 3 ▼ /
 E ◄---► F ◄---- G ----/

5. depth-first search (DFS)
Write the paths that a depth-first search would find from vertex A to all other vertices:

• in Graph 1
• in Graph 6

If a given vertex is not reachable from vertex A, write "no path" or "unreachable".

6. breadth-first search (BFS)
Write the paths that a breadth-first search would find from vertex A to all other vertices:

• in Graph 1
• in Graph 6

Which paths are shorter than the ones found by DFS in the previous problem?

7. minimum weight paths
Which paths found by DFS and BFS on Graph 6 in the previous problems are not minimal weight?
What are the minimal weight paths from vertex A to all other nodes? (Just inspect the graph manually.)

CSE 373 Section Handout #9
Solutions

1. merge sort
index 0 1 2 3 4 5 6 7
original {59, 15, 6, 28, 32, -7, 41, 8}
split {59, 15, 6, 28},{32, -7, 41, 8}
split {59, 15},{6, 28}
split {59}{15}
merge {15, 59}
split {6, 28}
split {6}{28}
merge {6, 28}
merge { 6, 15, 28, 59}
split {32, -7},{41, 8}
split {32}{-7}
merge {-7, 32}
split {41}{8}
merge {8, 41}
merge {-7, 8, 32, 41}
merge {-7, 6, 8, 15, 28, 32, 41, 49}

2. quick sort

index 0 1 2 3 4 5 6 7 8 9
original {19, 27, 6, 34, 46, 8, –4, 13, 51, 11}
 {11, 27, 6, 34, 46, 8, –4, 13, 51, 19} pivot (19) to end
 13 27 partitioning
 -4 34
 8 46
 11, 13, 6, -4, 8, 19, 34, 27, 51, 46 swap pivot back in
 8, 13, 6, -4, 11 pivot (11) to end
 -4 13 partitioning
 8, -4, 6, 11, 13 swap pivot back in
 6, -4, 8 pivot (8) to end
 -4 6 partitioning
 -4, 6, 8
 46, 27, 51, 34 pivot (34) to end
 27 46 partitioning
 27, 34, 51, 46 swap pivot back in
 46, 51 pivot (51) to end
 nothing to do
 {-4, 6, 8, 11, 13, 19, 27, 34, 46, 51}

3. radix sort

 index 0 1 2 3 4 5 6 7 8 9 10 11
 original {315, 88, 21, 149, 308, 6, 708, 411, 79, 116, 265, 400}

 1s bucket 400 21, 315, 6, 88, 149,
 411 265 116 308, 79
 708
 {400, 21, 411, 315, 265, 6, 116, 88, 308, 708, 149, 79}

 10s bucket 400, 411, 21 149 265 79 88
 6, 315,
 308, 116
 708
 {400, 6, 308, 708, 411, 315, 116, 21, 149, 265, 79, 88}
100s bucket 6, 116, 265 308, 400, 708
 21, 149 315 411
 79,
 88
 {6, 21, 79, 88, 116, 149, 265, 308, 315, 400, 411, 708}

CSE 373 Section Handout #9
Solutions, continued

4.
...
Graph 1: directed, unweighted, not connected, cyclic
 degrees: A=(in 0 out 2), B=(in 2 out 1), C=(in 1 out 1), D=(in 2 out 1),
 E=(in 2 out 2), F=(in 2 out 1), G=(in 2 out 1), H=(in 2 out 1),
 I=(in 0 out 2)
Graph 2: undirected, unweighted, connected, acyclic
 degrees: A=1, B=3, C=1, D=2, E=2, F=1
Graph 3: directed, unweighted, not connected, cyclic
 degrees: A=(in 1 out 2), B=(in 3 out 1), C=(in 0 out 1),
 D=(in 2 out 1), E=(in 1 out 2)
Graph 4: undirected, weighted, not connected, cyclic
 degrees: A=2, B=2, C=2, D=1, E=1
Graph 5: undirected, unweighted, strongly connected, cyclic
 degrees: A=3, B=3, C=3, D=3
Graph 6: directed, weighted, connected, cyclic
 degrees: A=(in 2 out 2), B=(in 2 out 3), C=(in 2 out 3), D=(in 2 out 0),
 E=(in 2 out 2), F=(in 3 out 2), G=(in 1 out 2)

5. DFS
Graph 1 Graph 6
A to B: {A, B} A to B: {A, C, B}
A to C: {A, B, E, F, C} A to C: {A, C}
A to D: {A, B, E, D} A to D: {A, C, D}
A to E: {A, B, E} A to E: {A, C, B, F, E}
A to F: {A, B, E, F} A to F: {A, C, B, F}
A to G: {A, B, E, D, G} A to G: {A, C, G}
A to H: {A, B, E, D, G, H}
A to I: no path

6. BFS (shorter paths in bold)
Graph 1 Graph 6
A to B: {A, B} A to B: {A, C, B}
A to C: {A, B, E, F, C} A to C: {A, C}
A to D: {A, D} A to D: {A, C, D}
A to E: {A, B, E} A to E: {A, E}
A to F: {A, B, E, F} A to F: {A, E, F}
A to G: {A, D, G} A to G: {A, C, G}
A to H: {A, D, G, H}
A to I: no path

7. minimum weight paths
 Graph 6
 A to B: {A, E, F, B}, weight=5
 A to C: {A, E, F, B, C}, weight=6
 A to D: {A, E, F, B, C, G, D}, weight=12
 A to E: {A, E}, weight=1
 A to F: {A, E, F}, weight=3
 A to G: {A, E, F, B, C, G}, weight=11

	CSE 373 Section Handout #9
	Sorting Algorithm Reference
	Graph Reference

