
HW05

Comparing Library Works with
Hash Tables

The Idea

• Two different authors: Shakespeare and Bacon
• One very long text from each (DO NOT PRINT)
• We give you file input routines to read the

words from each into two separate arrays of
strings in order from the text.

• Now you are going to create two hash tables,
one for each author that will keep a count of
how many times each word appears in that
author’s work.

The Data: REALLY BIG

• Hamlet by Shakespear

Project Gutenberg Etext of Hamlet by Shakespeare
PG has multiple editions of William Shakespeare's Complete Works
HAMLET, PRINCE OF DENMARK
by William Shakespeare
PERSONS REPRESENTED.
Claudius, King of Denmark.
Hamlet, Son to the former, and Nephew to the present King.
Polonius, Lord Chamberlain.
Horatio, Friend to Hamlet.
Laertes, Son to Polonius.
Voltimand, Courtier.
Cornelius, Courtier.
Rosencrantz, Courtier.
Guildenstern, Courtier.
Osric, Courtier.
A Gentleman, Courtier.
A Priest.

More Data: ALSO BIG

• Bacon Essays
The Project Gutenberg EBook of Essays, by Francis Bacon
THE ESSAYS OR COUNSELS, CIVIL AND MORAL,
OF FRANCIS Ld. VERULAM VISCOUNT ST. ALBANS
By Francis Bacon
THE ESSAYS
 Of Truth
 Of Death
 Of Unity in Religion
 Of Revenge
 Of Adversity
 Of Simulation and Dissimulation
 Of Parents and Children
 Of Marriage and Single Life
 Of Envy
 Of Love
 Of Great Place
 Of Boldness
 ...

Hash Tables

Hamlet 3457
 king 895
 shall 4000
...

truth 650
parents 346
shall 24
...

entry count entry count

Total counts: 8352 1020

Frequencies:
(count/arraysize)

Hamlet .4139
king .1072
shall .4789

truth .6373
parents .3392
shall .235

Squared Error = (.4139-0)2 + (.1072-0)2 + (.4789-.235)2
 + ((.6373-0)2 + (.3392-0)2

from going through first table
and checking second

from going through second table
and checking first (don’t count shall again)

General Distance Metric

• For each element e with frequency f in
Shakespeare, but not in Bacon, add f2 to the
error.

• For each element e with frequency g in Bacon,
but not in Shakespeare, add g2 to the error.

• For each element e with nonzero frequency f
in Shakespeare and nonzero frequency g in
Bacon, add (f-g)2 to the error.

Hash Table Implementations

• You will do this twice, 2 separate programs:
1. use chaining
2. use quadratic probing
• You will be given starter code and write a

number of functions yourself
• For converting a character string to an integer,

you may use Java’s HashCode method.
• But you can write your own for extra credit.

Main Functions to Write

• Constructors for hash tables
• insert(String keyToAdd): adds keyToAdd to

table if not there, setting count to 1, else adds
1 to count

• findCount(String keyToFind): returns the count
• getNextKey(): iterator that returns the next

key in a hash table, used when going through
the table to compute the distance metric

A Few More Details

• Insert will be different for the chaining and for
the probing.

• You will likely write multiple small helper
functions as you do this.

• Test.java has a bunch of TODOs.
• At the end you will print
1. the TOTAL error for the two tables
2. the word with the highest frequency difference

	HW05
	The Idea
	The Data: REALLY BIG
	More Data: ALSO BIG
	Hash Tables
	General Distance Metric
	Hash Table Implementations
	Main Functions to Write
	A Few More Details

