CSE 373 Section

with solutions

Megan Hopp Rama Gokhale 1/13/15

Today

- Proof by Induction
- Big-Oh
- Algorithm Analysis

Proof by Induction

Base Case:

1.Prove P(0) (sometimes P(1)) Inductive Hypothesis

2.Let k be an arbitrary integer ≥ 0

3.Assume that P(k) is true

Inductive Step

4. ...

5. Prove P(k+1) is true

Solutions

$$\sum_{i=1}^{n} i = n(n+1)/2 \quad \text{for all } n \ge 1$$

Solution:

1. Base Case: n = 1

$$\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$$

2. Inductive Hypothesis:

Assume that $\sum_{i=1}^{k} i = k(k+1)/2$ is true for all $k \ge 1$.

3. Inductive Step: (k+1)

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k}{2} + k + 1$$

$$= \frac{k^2 + k}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}$$

[Inductive hypothesis]

$$\sum_{i=1}^{N} i^{2} = 1 + 2^{2} + 3^{2} + 4^{2} + \dots = \frac{N(N+1)(2N+1)}{6}$$

Solutions

Solution:

1. Base Case: n = 1

$$\sum_{i=1}^{1} i^2 = 1^2 = 1 = \frac{6}{6} = \frac{1(1+1)(2(1)+1)}{6}$$

2. Inductive Hypothesis: Assume that

$$\sum_{i=1}^{k} k^{2} = \frac{k(k+1)(2k+1)}{6}$$
 for all $k \ge 1$.

3. Inductive Step: (k+1)

$$\sum_{i=1}^{k+1} i^{2} = \sum_{i=1}^{k} i^{2} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2} [Inductive Hypothesis]$$

$$= \frac{(2k^{3}+2k^{2}+k^{2}+k)}{6} + (k+1)^{2}$$

$$= \frac{(2k^{3}+2k^{2}+k^{2}+k)}{6} + k^{2} + 2k + 1$$

$$= \frac{(2k^{3}+2k^{2}+k^{2}+k)}{6} + \frac{6k^{2}+12k+6}{6}$$

$$= \frac{2k^{3}+9k^{2}+13k+6}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} \text{ where } n \in Z^{+}$$

Solutions

Solution:

Base Case: n = 1

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{2} = \frac{1}{1+1} = \frac{n}{n+1}$$

Inductive Hypothesis:

Assume that $\sum_{i=1}^{k} \frac{1}{i(i+1)} = \frac{k}{k+1}$ for all $k \ge 1$. Inductive Step: (k+1): We have to prove that

$$\sum_{k=1}^{n+1} \frac{1}{i(i+1)} = \frac{(n+1)}{(n+1)+1}$$

Taking the left hand side...

$$\sum_{k=1}^{n+1} \frac{1}{i(i+1)} = \left(\sum_{k=1}^{n} \frac{1}{i(i+1)}\right) + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n2 + 2n + 1}{(n+1)(n+2)}$$
$$= \frac{(n+1)^2}{(n+1)(n+2)}$$
$$= \frac{n+1}{n+2}$$
$$= \frac{(n+1)}{(n+1)+1}$$

By showing this works for the base case, and then assuming it works for an integer $n \in Z^+$, and proving it works for n+1, we can conclude that it is true for all $n \in Z^+$.

Logarithms

- log means log base of 2
- log(N^k)= k log N
 - Eg. $Log(A^2) = log(A^*A) = log A + log A = 2log A$

Big-Oh

- We only look at worst case
- Big input
- Ignore constant factor and lower order terms

 Why?
- Definition:

g(n) is in O(f(n)) if there exist constants c and nO such that $g(n) \square f(n)$ for all n $\square f(n)$

 Also lower bound and tight bound
 We use O on a function f(n) (for example n²) to mean the set of functions with asymptotic behavior less than or equal to f(n)

How to analyze the code?

Consecutive statements	
Sum of times	
Conditionals	Time of test plus slower
branch	
Loops	
Sum of iterations	
Calls	
Time of call's body	,
Recursion	Solve
recurrence equation	


```
1. O(log N)
```

2.int example2(int n, int sum) {
 for (int k = 0; k < n * n; ++k)
 for (int j = 0; j <
 k; j++)

```
sum++;
return sum;
```

```
3.int example3(int n, int sum) {
    for (int k = n; k > 0; k--) {
        for (int i = 0; i < k; i++)
            sum++;
        for (int j = n; j > 0; j--)
            sum++;
        }
    return sum;
}
3. O(n^2)
```

```
(From CSE332 12SP Midterm)
```

2. O(n^4)

}

Algorithm Analysis

- What is the Big-Oh for the following?
 - Finding the smallest item in an N-item array
 - Sorted? O(1)
 - Unsorted? O(N)

- Hint: What is the worst case location of the item?