CSE 373 Section

 with solutionsMegan Hopp
Rama Gokhale

$$
1 / 13 / 15
$$

Today

- Proof by Induction
- Big-Oh
- Algorithm Analysis

Proof by Induction

Base Case:

1.Prove $\mathrm{P}(0)$ (sometimes $\mathrm{P}(1)$)

Inductive Hypothesis
2. Let k be an arbitrary integer ≥ 0
3.Assume that $\mathrm{P}(\mathrm{k})$ is true Inductive Step
4. ...
5. Prove $P(k+1)$ is true

Examples

Solutions

$$
\sum_{i=1}^{n} i=n(n+1) / 2 \quad \text { for all } \mathrm{n} \geq 1
$$

Solution:

1. Base Case: $\mathrm{n}=1$

$$
\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}
$$

2. Inductive Hypothesis:

Assume that $\sum_{i=1}^{k} i=k(k+1) / 2$ is true for all $\mathrm{k} \geq 1$.
3. Inductive Step: $(k+1)$

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \quad \text { [Inductive hypothesis] } \\
& =\frac{k^{2}+k}{2}+k+1 \\
& =\frac{k^{2}+k}{2}+\frac{2(k+1)}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2} \\
& =\frac{(k+1)((k+1)+1)}{2}
\end{aligned}
$$

$$
\sum_{i=1}^{N} i^{2}=1+2^{2}+3^{2}+4^{2}+\cdots=\frac{N(N+1)(2 N+1)}{6}
$$

Examples

Solutions

Solution:

1. Base Case: $\mathrm{n}=1$

$$
\sum_{i=1}^{1} i^{2}=1^{2}=1=\frac{6}{6}=\frac{1(1+1)(2(1)+1)}{6}
$$

2. Inductive Hypothesis:

Assume that
$\sum_{i=1}^{k} k^{2}=\frac{k(k+1)(2 k+1)}{6}$ for all $k \geq 1$.
3. Inductive Step: (k+1)

$$
\begin{aligned}
& \sum_{i=1}^{k+1} i^{2}=\sum_{i=1}^{k} i^{2}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \text { [Inductive Hypothesis] } \\
& =\frac{\left(2 k^{3}+2 k^{2}+k^{2}+k\right)}{6}+(k+1)^{2} \\
& =\frac{\left(2 k^{3}+2 k^{2}+k^{2}+k\right)}{6}+k^{2}+2 k+1 \\
& =\frac{\left(2 k^{3}+2 k^{2}+k^{2}+k\right)}{6}+\frac{6 k^{2}+12 k+6}{6} \\
& =\frac{2 k^{3}+9 k^{2}+13 k+6}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

$\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ where $n \in Z^{+}$

Solution:
Base Case: $\mathrm{n}=1$
$\sum_{i=1}^{1} 1 / i(i+1)=\frac{1}{2}=\frac{1}{1+1}=\frac{n}{n+1}$
Inductive Hypothesis:
Assume that $\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}$ for all $k \geq 1$.

Examples
Solutions

Inductive Step: (k+1):
We have to prove that
$\sum_{k=1}^{n+1} \frac{1}{i(i+1)}=\frac{(n+1)}{(n+1)+1}$
Taking the left hand side...

$$
\begin{aligned}
& \sum_{k=1}^{n+1} \frac{1}{i(i+1)}=\left(\sum_{k=1}^{n} \frac{1}{i(i+1)}\right)+\frac{1}{(n+1)(n+2)} \\
& =\frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n 2+2 n+1}{(n+1)(n+2)} \\
& =\frac{(n+1)^{2}}{(n+1)(n+2)} \\
& =\frac{n+1}{n+2} \\
& =\frac{(n+1)}{(n+1)+1}
\end{aligned}
$$

By showing this works for the base case, and then assuming it works for an integer $n \in Z^{+}$, and proving it works for $n+1$, we can conclude that it is true for all $n \in Z^{+}$.

Logarithms

- log means log base of 2
- $\log \left(N^{k}\right)=k \log N$
$-E g \cdot \log \left(A^{2}\right)=\log \left(A^{*} A\right)=\log A+\log A=2 \log A$

Big-Oh

- We only look at worst case
- Big input
- Ignore constant factor and lower order terms
- Why?
- Definition:
$g(n)$ is in $O(f(n))$ if there exist constants
c and n0
such that $g(n) \square f(n)$ for all $n \square 0$
- Also lower bound and tight bound

We use O on a function $f(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

How to analyze the code?

Consecutive statements
Sum of times
Conditionals
Time of test plus slower branch

Loops
Sum of iterations
Calls
Time of call's body
Recursion
Solve
recurrence equation

Examples

Algorithm Analysis

- What is the Big-Oh for the following?
- Finding the smallest item in an N -item array
- Sorted?
- Unsorted?

O(N)

- Hint: What is the worst case location of the item?

