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Amortized Analysis 

• In amortized analysis, the time required to perform a 
sequence of data structure operations is averaged 
over all the operations performed. 
 

• Typically used to show that the average cost of an 
operation is small for a sequence of operations, even 
though a single operation can cost a lot 
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Amortized Analysis  

• Recall our plain-old stack implemented as an array that doubles its 
size if it runs out of room 
– How can we claim push is O(1) time if resizing is O(n) time? 
– We can’t, but we can claim it’s an O(1) amortized operation 

 

We will just do a simple example  
– Text has more sophisticated examples and proof techniques 
– Idea of how amortized describes average cost is essential 
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Amortized Complexity 

We get an upperbound T(n) on the total time of a sequence of n 
operations. The average time per operation is then T(n)/n, which is 
also the amortized time per operation. 
 

If a sequence of n operations takes O(n f(n)) time, we say the 
amortized runtime is O(f(n)) 

– E.g. If any n operations take O(n), then amortized O(1) per operation 
– E.g. If any n operations take O(n3), then amortized O(n2) per operation 

 

Amortized guarantee ensures the average time per operation for any 
sequence is O(f(n)) 
 

The worst case time for an operation can be larger than f(n) 
– As long as the worst case is always “rare enough” in any 

sequence of operations 
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“Building Up Credit” 

• Can think of preceding “cheap” operations as building up “credit” 
that can be used to “pay for” later “expensive” operations 
 

• Because any sequence of operations must be under the bound, 
enough “cheap” operations must come first 
– Else a prefix of the sequence, which is also a sequence, 

would violate the bound. 
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Example #1: Resizing stack 

A stack implemented with an array where we double the size of the 
array if it becomes full 
 

Claim: Any sequence of push/pop/isEmpty is amortized O(1) 
 
Need to show any sequence of M operations takes time O(M) 

– Recall the non-resizing work is O(M) (i.e., M*O(1)) 
– The resizing work is proportional to the total number of element 

copies we do for the resizing 
– So it suffices to show that: 

 After M operations, we have done < 2M total element copies 
    (So average number of copies per operation is bounded by a 

constant) 
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Amount of copying 

Claim: after  M operations, we have done  < 2M  total element copies 
 

Let n be the size of the array after M operations 
– Then we have done a total of: 

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n 
 element copies 
– Because we must have done at least enough push operations 

to cause resizing up to size n: 
 M ≥ n/2 

– So 
2M ≥ n > number of element copies 
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Other approaches 

• If array grows by a constant amount (say 1000),  
 operations are not amortized O(1) 

– After O(M) operations, you may have done Θ(M2) copies 
 

• If array shrinks when 1/2 empty, operations are not amortized O(1) 
– Terrible case: pop once and shrink, push once and grow, pop 

once and shrink, … 
 

• If array shrinks when 3/4 empty, it is amortized O(1) 
– Proof is more complicated, but basic idea remains: by the time 

an expensive operation occurs, many cheap ones occurred 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 
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class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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Example #2: Queue with two stacks 
A clever and simple queue implementation using only stacks 

Winter 2015 CSE 373 Data structures and Algorithms 

class Queue<E> { 
  Stack<E> in  = new Stack<E>(); 
  Stack<E> out = new Stack<E>(); 
  void enqueue(E x){ in.push(x); } 
  E dequeue(){ 
    if(out.isEmpty()) { 
      while(!in.isEmpty()) { 
        out.push(in.pop()); 
      } 
    } 
    return out.pop(); 
  } 
} 
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dequeue again 
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Analysis 

• dequeue is not O(1) worst-case because out might be empty 
and in may have lots of items 
 

• But if the stack operations are (amortized) O(1), then any 
sequence of queue operations is amortized O(1) 
 
– The total amount of work done per element is 1 push onto 

in, 1 pop off of in, 1 push onto out, 1 pop off of out 
 

– When you reverse n elements, there were n earlier O(1) 
enqueue operations to average with 
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When is Amortized Analysis Useful? 

• When the average per operation is all we care about (i.e., sum 
over all operations), amortized is perfectly fine 
– This is the usual situation 

 
• If we need every operation to finish quickly (e.g., in a web 

server), amortized bounds may be too weak 
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Not always so simple 

• Proofs for amortized bounds can be much more complicated 
 

• Example: Splay trees are dictionaries with amortized O(log n) 
operations 
– No extra height field like AVL trees 
– See Chapter 4.5 if curious 

 

• For more complicated examples, the proofs need much more 
sophisticated invariants and “potential functions” to describe 
how earlier cheap operations build up “energy” or “money” to 
“pay for” later expensive operations 
– See Chapter 11 if curious 

 

• But complicated proofs have nothing to do with the code (which 
may be easy!) 
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Switching gears… 

• Memory hierarchy/locality 
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Why do we need to know about the  
memory hierarchy/locality? 
• One of the assumptions that Big-O makes is that all 

operations take the same amount of time 
• Is this really true? 
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Definitions 

• A cycle (for our purposes) is the time it takes to 
execute a single simple instruction (e.g. adding two 
registers together) 

• Memory latency is the time it takes to access memory 
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CPU ~16-64+ 
registers 

Time to access: 

1 ns per instruction 

Cache SRAM 
 

8 KB - 4 MB 
2-10 ns 

Main Memory 
 
 
 

DRAM 
 

2-10 GB 
40-100 ns 

Disk 
many GB 

a few 
milliseconds 
 
(5-10 million ns) 
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What does this mean? 

• It is much faster to do:  Than: 

5 million arithmetic ops   1 disk access 

2500 L2 cache accesses  1 disk access 

400 main memory accesses  1 disk access 
• Why are computers build this way? 

– Physical realities (speed of light, closeness to CPU) 
– Cost (price per byte of different storage technologies) 
– Under the right circumstances, this kind of hierarchy can 

simulate storage with access time of highest (fastest) level 
and size of lowest (largest) level 
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Processor-Memory Performance Gap 
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What can be done? 

• Goal: attempt to reduce the accesses to slower 
levels 
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So, what can we do? 

• The hardware automatically moves data from main memory into 
the caches for you 
– Replacing items already there 
– Algorithms are much faster if “data fits in cache” (often does) 

 
• Disk accesses are done by software (e.g. ask operating system to 

open a file or database to access some records) 
 

• So most code “just runs,” but sometimes it’s worth designing 
algorithms / data structures with knowledge of memory hierarchy 
– To do this, we need to understand locality 
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Locality 

• Temporal Locality (locality in time) 
– If an item (a location in memory) is referenced, that same 

location will tend to be referenced again soon. 
 

• Spatial Locality (locality in space) 
– If an item is referenced, items whose addresses are close 

by tend to be referenced soon. 
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How does data move up the hierarchy? 

• Moving data up the hierarchy is slow because of latency (think 
distance to travel) 
– Since we’re making the trip anyway, might as well carpool 

• Get a block of data in the same time we could get a byte 
– Sends nearby memory because 

• It’s easy 
• Likely to be asked for soon (think fields/arrays) 

• Once a value is in cache, may as well keep it around for a while; 
accessed once, a value is more likely to be accessed again in 
the near future (as opposed to some random other value) 
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Spatial Locality 

Temporal Locality 
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Cache Facts 

 
• Definitions: 

– Cache hit – address requested is in the cache 
– Cache miss – address requested is NOT in the 

cache 
– Block or page size – the number of contiguous 

bytes moved from disk to memory 
– Cache line size – the number of contiguous bytes 

moved from memory to cache 
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Examples 

x = a + 6 

y = a + 5 

z = 8 * a 

 

 

x = a[0] + 6 

y = a[1] + 5 

z = 8 * a[2] 
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Examples 

x = a + 6  

y = a + 5 

z = 8 * a 

 

 

x = a[0] + 6 

y = a[1] + 5 

z = 8 * a[2] 
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miss miss 

hit 

hit 

hit 

hit 
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Examples 

x = a + 6  

y = a + 5 

z = 8 * a 

 

 

x = a[0] + 6 

y = a[1] + 5 

z = 8 * a[2] 
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miss miss 

hit 

hit 

hit 

hit 

temporal 
locality 

spatial 
locality 
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Locality and Data Structures 

• Which has (at least the potential) for better spatial locality, 
arrays or linked lists? 
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cache line size cache line size 
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Locality and Data Structures 

• Which has (at least the potential) for better spatial locality, 
arrays or linked lists? 
– e.g. traversing elements  

 
 
 
 
 
 
 
 

• Only miss on first item in a cache line 
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cache line size cache line size 

miss miss hit hit hit hit hit 
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Locality and Data Structures 

• Which has (at least the potential) for better spatial locality, 
arrays or linked lists? 
– e.g. traversing elements  
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Locality and Data Structures 

• Which has (at least the potential) for better spatial locality, 
arrays or linked lists? 
– e.g. traversing elements  

 
 
 
 
 

• Miss on every item (unless more than one randomly happen to 
be in the same cache line) 
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miss hit miss hit miss hit miss hit 
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