
CSE373: Data Structures & Algorithms

Lecture 12: Amortized Analysis
and Memory Locality

Linda Shapiro
Winter 2015

Announcements

Winter 2015 2 CSE 373 Data structures and Algorithms

Amortized Analysis

• In amortized analysis, the time required to perform a
sequence of data structure operations is averaged
over all the operations performed.

• Typically used to show that the average cost of an
operation is small for a sequence of operations, even
though a single operation can cost a lot

Winter 2015 3 CSE 373 Data structures and Algorithms

Amortized Analysis

• Recall our plain-old stack implemented as an array that doubles its
size if it runs out of room
– How can we claim push is O(1) time if resizing is O(n) time?
– We can’t, but we can claim it’s an O(1) amortized operation

We will just do a simple example
– Text has more sophisticated examples and proof techniques
– Idea of how amortized describes average cost is essential

Winter 2015 CSE 373 Data structures and Algorithms 4

Amortized Complexity

We get an upperbound T(n) on the total time of a sequence of n
operations. The average time per operation is then T(n)/n, which is
also the amortized time per operation.

If a sequence of n operations takes O(n f(n)) time, we say the
amortized runtime is O(f(n))

– E.g. If any n operations take O(n), then amortized O(1) per operation
– E.g. If any n operations take O(n3), then amortized O(n2) per operation

Amortized guarantee ensures the average time per operation for any
sequence is O(f(n))

The worst case time for an operation can be larger than f(n)
– As long as the worst case is always “rare enough” in any

sequence of operations

Winter 2015 CSE 373 Data structures and Algorithms 5

“Building Up Credit”

• Can think of preceding “cheap” operations as building up “credit”
that can be used to “pay for” later “expensive” operations

• Because any sequence of operations must be under the bound,
enough “cheap” operations must come first
– Else a prefix of the sequence, which is also a sequence,

would violate the bound.

Winter 2015 CSE 373 Data structures and Algorithms 6

Example #1: Resizing stack

A stack implemented with an array where we double the size of the
array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized O(1)

Need to show any sequence of M operations takes time O(M)

– Recall the non-resizing work is O(M) (i.e., M*O(1))
– The resizing work is proportional to the total number of element

copies we do for the resizing
– So it suffices to show that:

 After M operations, we have done < 2M total element copies
 (So average number of copies per operation is bounded by a

constant)

Winter 2015 CSE 373 Data structures and Algorithms 7

Amount of copying

Claim: after M operations, we have done < 2M total element copies

Let n be the size of the array after M operations
– Then we have done a total of:

 n/2 + n/4 + n/8 + … INITIAL_SIZE < n
 element copies
– Because we must have done at least enough push operations

to cause resizing up to size n:
 M ≥ n/2

– So
2M ≥ n > number of element copies

Winter 2015 CSE 373 Data structures and Algorithms 8

Other approaches

• If array grows by a constant amount (say 1000),
 operations are not amortized O(1)

– After O(M) operations, you may have done Θ(M2) copies

• If array shrinks when 1/2 empty, operations are not amortized O(1)
– Terrible case: pop once and shrink, push once and grow, pop

once and shrink, …

• If array shrinks when 3/4 empty, it is amortized O(1)
– Proof is more complicated, but basic idea remains: by the time

an expensive operation occurs, many cheap ones occurred

Winter 2015 CSE 373 Data structures and Algorithms 9

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2015 CSE 373 Data structures and Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

C
B
A

in out

enqueue: A, B, C

10

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2015 CSE 373 Data structures and Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue

B
C

A

11

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2015 CSE 373 Data structures and Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

enqueue D, E

B
C

A

E
D

12

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2015 CSE 373 Data structures and Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue twice

C B A

E
D

13

Example #2: Queue with two stacks
A clever and simple queue implementation using only stacks

Winter 2015 CSE 373 Data structures and Algorithms

class Queue<E> {
 Stack<E> in = new Stack<E>();
 Stack<E> out = new Stack<E>();
 void enqueue(E x){ in.push(x); }
 E dequeue(){
 if(out.isEmpty()) {
 while(!in.isEmpty()) {
 out.push(in.pop());
 }
 }
 return out.pop();
 }
}

in out

dequeue again

D C B A

E

14

Analysis

• dequeue is not O(1) worst-case because out might be empty
and in may have lots of items

• But if the stack operations are (amortized) O(1), then any
sequence of queue operations is amortized O(1)

– The total amount of work done per element is 1 push onto

in, 1 pop off of in, 1 push onto out, 1 pop off of out

– When you reverse n elements, there were n earlier O(1)
enqueue operations to average with

Winter 2015 CSE 373 Data structures and Algorithms 15

When is Amortized Analysis Useful?

• When the average per operation is all we care about (i.e., sum
over all operations), amortized is perfectly fine
– This is the usual situation

• If we need every operation to finish quickly (e.g., in a web

server), amortized bounds may be too weak

Winter 2015 CSE 373 Data structures and Algorithms 16

Not always so simple

• Proofs for amortized bounds can be much more complicated

• Example: Splay trees are dictionaries with amortized O(log n)
operations
– No extra height field like AVL trees
– See Chapter 4.5 if curious

• For more complicated examples, the proofs need much more
sophisticated invariants and “potential functions” to describe
how earlier cheap operations build up “energy” or “money” to
“pay for” later expensive operations
– See Chapter 11 if curious

• But complicated proofs have nothing to do with the code (which
may be easy!)

Winter 2015 CSE 373 Data structures and Algorithms 17

Switching gears…

• Memory hierarchy/locality

Winter 2015 18 CSE 373 Data structures and Algorithms

Why do we need to know about the
memory hierarchy/locality?
• One of the assumptions that Big-O makes is that all

operations take the same amount of time
• Is this really true?

Winter 2015 CSE 373 Data structures and Algorithms 19

Definitions

• A cycle (for our purposes) is the time it takes to
execute a single simple instruction (e.g. adding two
registers together)

• Memory latency is the time it takes to access memory

Winter 2015 CSE 373 Data structures and Algorithms 20

Winter 2015 CSE 373 Data structures and Algorithms

CPU ~16-64+
registers

Time to access:

1 ns per instruction

Cache SRAM

8 KB - 4 MB
2-10 ns

Main Memory

DRAM

2-10 GB
40-100 ns

Disk
many GB

a few
milliseconds

(5-10 million ns)

21

What does this mean?

• It is much faster to do: Than:

5 million arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access
• Why are computers build this way?

– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different storage technologies)
– Under the right circumstances, this kind of hierarchy can

simulate storage with access time of highest (fastest) level
and size of lowest (largest) level

Winter 2015 CSE 373 Data structures and Algorithms 22

Winter 2015 CSE 373 Data structures and Algorithms 23

Processor-Memory Performance Gap

Winter 2015 CSE 373 Data structures and Algorithms 24

What can be done?

• Goal: attempt to reduce the accesses to slower
levels

Winter 2015 CSE 373 Data structures and Algorithms 25

So, what can we do?

• The hardware automatically moves data from main memory into
the caches for you
– Replacing items already there
– Algorithms are much faster if “data fits in cache” (often does)

• Disk accesses are done by software (e.g. ask operating system to

open a file or database to access some records)

• So most code “just runs,” but sometimes it’s worth designing
algorithms / data structures with knowledge of memory hierarchy
– To do this, we need to understand locality

Winter 2015 CSE 373 Data structures and Algorithms 26

Locality

• Temporal Locality (locality in time)
– If an item (a location in memory) is referenced, that same

location will tend to be referenced again soon.

• Spatial Locality (locality in space)
– If an item is referenced, items whose addresses are close

by tend to be referenced soon.

Winter 2015 CSE 373 Data structures and Algorithms 27

How does data move up the hierarchy?

• Moving data up the hierarchy is slow because of latency (think
distance to travel)
– Since we’re making the trip anyway, might as well carpool

• Get a block of data in the same time we could get a byte
– Sends nearby memory because

• It’s easy
• Likely to be asked for soon (think fields/arrays)

• Once a value is in cache, may as well keep it around for a while;
accessed once, a value is more likely to be accessed again in
the near future (as opposed to some random other value)

Winter 2015 CSE 373 Data structures and Algorithms

Spatial Locality

Temporal Locality

28

Cache Facts

• Definitions:

– Cache hit – address requested is in the cache
– Cache miss – address requested is NOT in the

cache
– Block or page size – the number of contiguous

bytes moved from disk to memory
– Cache line size – the number of contiguous bytes

moved from memory to cache

Winter 2015 CSE 373 Data structures and Algorithms 29

Examples

x = a + 6

y = a + 5

z = 8 * a

x = a[0] + 6

y = a[1] + 5

z = 8 * a[2]

Winter 2015 CSE 373 Data structures and Algorithms 30

Examples

x = a + 6

y = a + 5

z = 8 * a

x = a[0] + 6

y = a[1] + 5

z = 8 * a[2]

Winter 2015 CSE 373 Data structures and Algorithms

miss miss

hit

hit

hit

hit

31

Examples

x = a + 6

y = a + 5

z = 8 * a

x = a[0] + 6

y = a[1] + 5

z = 8 * a[2]

Winter 2015 CSE 373 Data structures and Algorithms

miss miss

hit

hit

hit

hit

temporal
locality

spatial
locality

32

Locality and Data Structures

• Which has (at least the potential) for better spatial locality,
arrays or linked lists?

Winter 2015 CSE 373 Data structures and Algorithms

cache line size cache line size

33

Locality and Data Structures

• Which has (at least the potential) for better spatial locality,
arrays or linked lists?
– e.g. traversing elements

• Only miss on first item in a cache line

Winter 2015 CSE 373 Data structures and Algorithms

cache line size cache line size

miss miss hit hit hit hit hit

34

Locality and Data Structures

• Which has (at least the potential) for better spatial locality,
arrays or linked lists?
– e.g. traversing elements

Winter 2015 CSE 373 Data structures and Algorithms 35

Locality and Data Structures

• Which has (at least the potential) for better spatial locality,
arrays or linked lists?
– e.g. traversing elements

• Miss on every item (unless more than one randomly happen to
be in the same cache line)

Winter 2015 CSE 373 Data structures and Algorithms

miss hit miss hit miss hit miss hit

36

	CSE373: Data Structures & Algorithms��Lecture 12: Amortized Analysis �and Memory Locality
	Announcements	
	Amortized Analysis
	Amortized Analysis
	Amortized Complexity
	“Building Up Credit”
	Example #1: Resizing stack
	Amount of copying
	Other approaches
	Example #2: Queue with two stacks
	Example #2: Queue with two stacks
	Example #2: Queue with two stacks
	Example #2: Queue with two stacks
	Example #2: Queue with two stacks
	Analysis
	When is Amortized Analysis Useful?
	Not always so simple
	Switching gears…
	Why do we need to know about the �memory hierarchy/locality?
	Definitions
	Slide Number 21
	What does this mean?
	Slide Number 23
	Processor-Memory Performance Gap
	What can be done?
	So, what can we do?
	Locality
	How does data move up the hierarchy?
	Cache Facts
	Examples
	Examples
	Examples
	Locality and Data Structures
	Locality and Data Structures
	Locality and Data Structures
	Locality and Data Structures

