

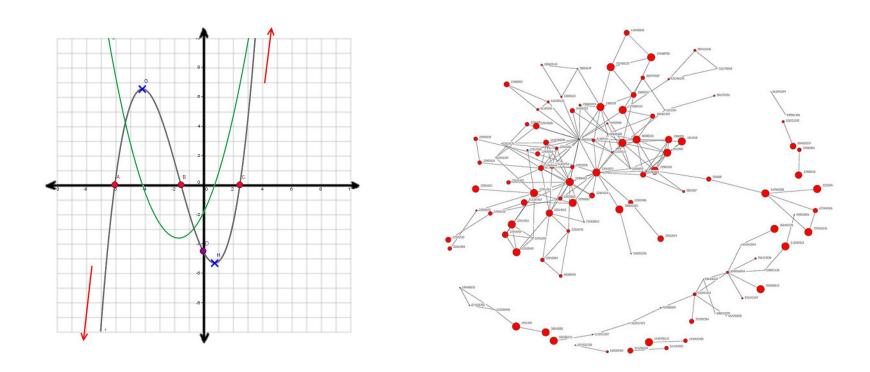
CSE373: Data Structures & Algorithms

Lecture 16: Introduction to Graphs

Linda Shapiro Winter 2015

Announcements

What is a Graph?



Which kind of graph are we going to study?

Graphs: the mathematical definition

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair

$$G = (V, E)$$

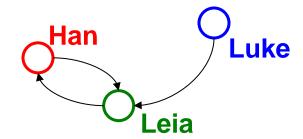
A set of vertices, also known as nodes

$$V = \{v_1, v_2, \dots, v_n\}$$

A set of edges

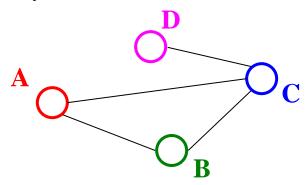
$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge e_i is a pair of vertices
 (v_i,v_k)
- An edge "connects" the vertices
- Graphs can be directed or undirected



Undirected Graphs

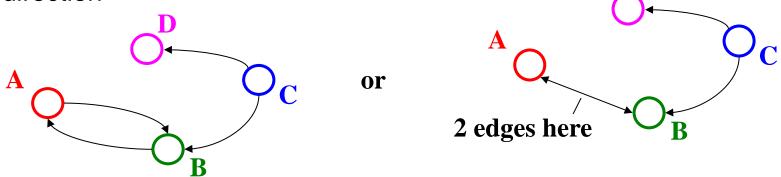
- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"



- Thus, $(u,v) \in E$ implies $(v,u) \in E$ (What do we call this property?)
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

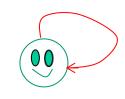
Directed Graphs

In directed graphs (sometimes called digraphs), edges have a direction

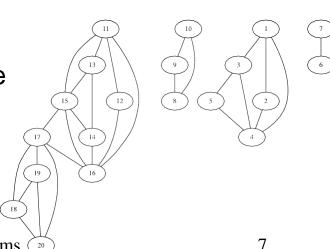


- Thus, $(u,v) \in E$ does not imply $(v,u) \in E$.
 - Let $(u,v) \in E \text{ mean } u \rightarrow v$
 - Call u the source and v the destination
- In-degree of a vertex: number of in-bound edges,
 i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges i.e., edges where the vertex is the source

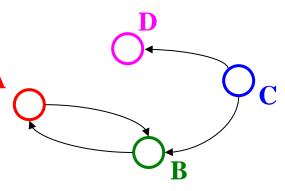
Self-Edges, Connectedness



- A self-edge a.k.a. a loop is an edge of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
 - Even if every node has non-zero degree

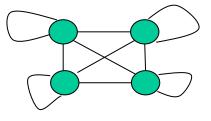


More notation



For a graph G = (V,E):

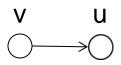
- |v| is the number of vertices
- |E| is the number of edges
 - Minimum?



- Maximum for undirected? |V||V+1|/2 ∈ $O(|V|^2)$
- Maximum for directed? $|V|^2 \in O(|V|^2)$

(assuming self-edges allowed, else subtract |V|)

- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$



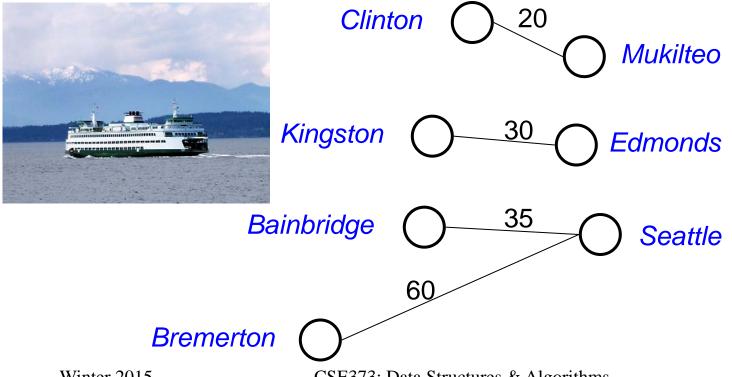
Examples

Which would use directed edges? Which would have self-edges? Which would be connected? Which could have 0-degree nodes?

- 1. Web pages with links
- 2. Facebook friends
- 3. Methods in a program that call each other
- 4. Road maps (e.g., Google maps)
- Airline routes
- 6. Family trees
- 7. Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many do not



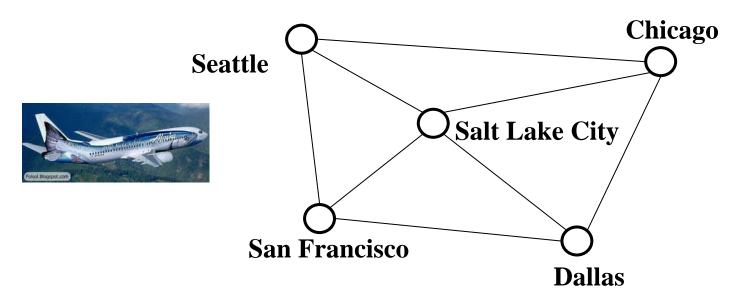
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices $[v_0, v_1, ..., v_n]$ such that $(v_i, v_{i+1}) \in$ E for all $0 \le i < n$. Say "a path from v_0 to v_n "
- A cycle is a path that begins and ends at the same node $(\mathbf{v_0} == \mathbf{v_n})$



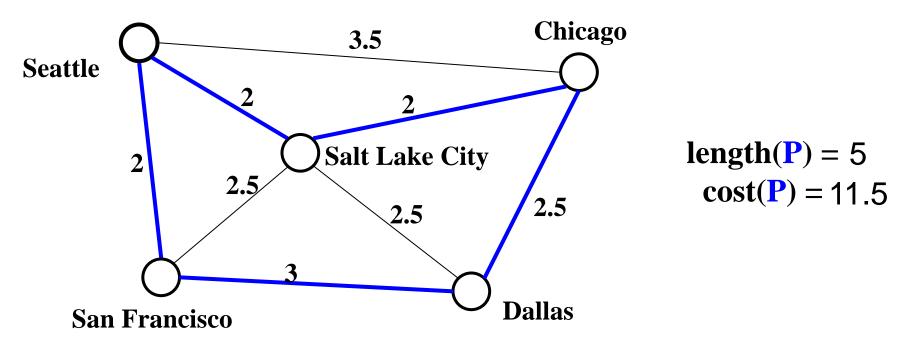
Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of weights of edges in a path

Example where

P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]



Simple Paths and Cycles

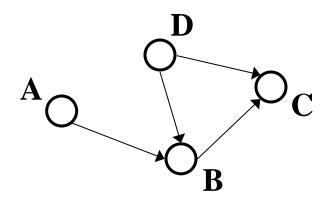
 A simple path repeats no vertices, except the first might be the last

[Seattle, Salt Lake City, San Francisco, Dallas] [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a cycle is a path that ends where it begins
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is both a cycle and a simple path [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

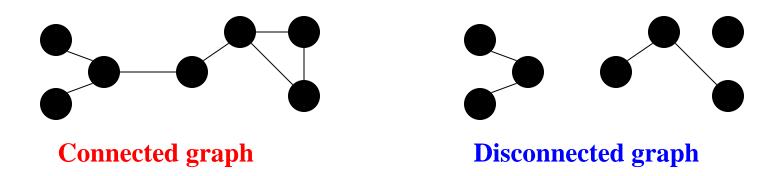


Is there a path from A to D? No

Does the graph contain any cycles? No

Undirected-Graph Connectivity

 An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v

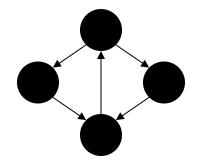


An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v

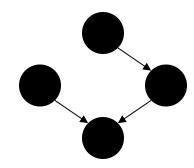
plus self edges

Directed-Graph Connectivity

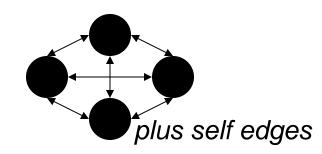
 A directed graph is strongly connected if there is a path from every vertex to every other vertex



 A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges



 A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex



Trees as Graphs

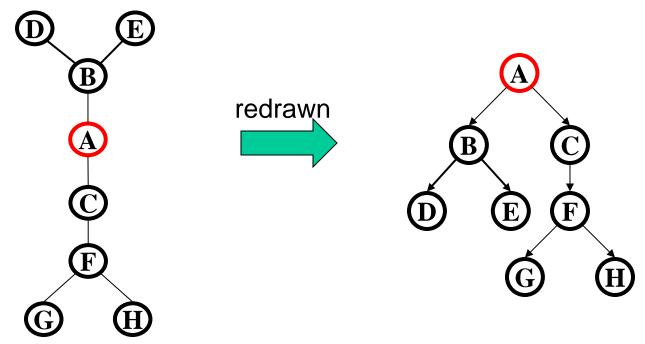
When talking about graphs, we say a tree is a graph that is:

- Undirected
- Acyclic
- Connected

So all trees are graphs, but not all graphs are trees

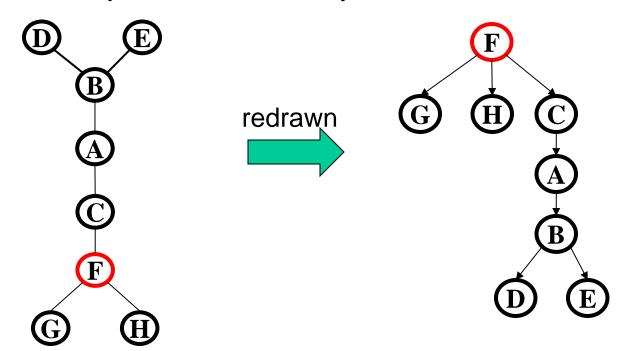
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently



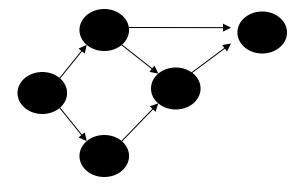
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

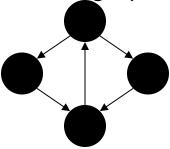


Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree



- Every DAG is a directed graph
- But not every directed graph is a DAG



Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

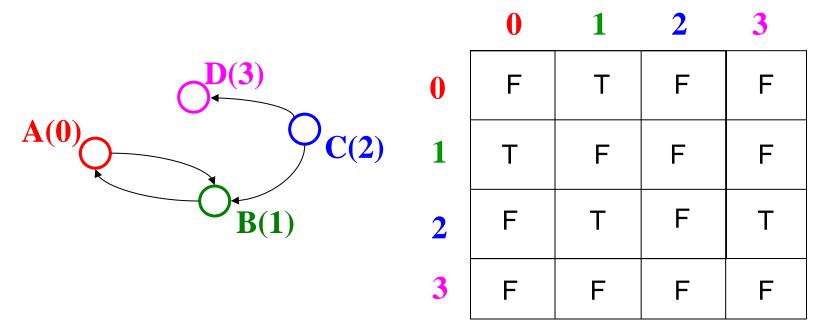
- Let E be the set of edges and V the set of vertices.
- Then $0 \le |E| \le |V|^2$
- And |E| is $O(|V|^2)$
- Because |E| is often much smaller than its maximum size, we do not always approximate |E| as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., |E| is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If |E| is O(|V|) we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- The "best one" can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., "is (u,v) an edge?" versus
 "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to |v|-1
- A |v| x |v| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] being true means there is an edge from u to v



Adjacency Matrix Properties

0 1 2 3

0

- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - Get a vertex's in-edges: O(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: O(1)

V	_		
F	Т	F	F
Т	F	Ŧ	F
F	Т	F	Т
F	F	F	F

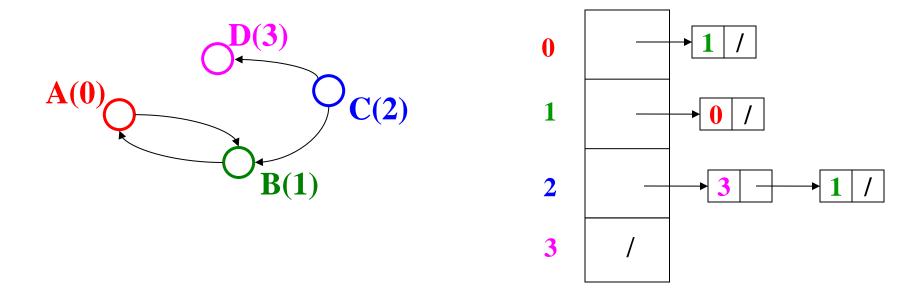
- Space requirements:
 - $|V|^2$ bits
- Best for sparse or dense graphs?
 - Best for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
 - Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent 'not an edge'
 - In *some* situations, 0 or -1 works

Adjacency List

- Assign each node a number from 0 to |v|-1
- An array of length |v| in which each entry stores a list of all adjacent vertices (e.g., linked list)



Adjacency List Properties

0 1 /

1

- Running time to:
 - Get all of a vertex's out-edges:
 - O(d) where d is out-degree of vertex
 - Get all of a vertex's in-edges:
 - O(|E|) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - O(d) where d is out-degree of source
 - Insert an edge:
 - O(1) (unless you need to check if it's there)
 - Delete an edge:
 - O(d) where d is out-degree of source
- Space requirements:

Good for sparse graphs

-O(|V|+|E|)

Next...

Okay, we can represent graphs

Next lecture we'll implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path