CSE 373: Data Structures \& Algorithms Lecture 17: Topological Sort / Graph Traversals

Linda Shapiro
Winter 2015

Announcements

Adjacency Matrix

- Assign each node a number from 0 to |V|-1
- $A|V| \times|V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
- If M is the matrix, then $M[u][v]$ being true means there is an edge from \mathbf{u} to \mathbf{v}

Adjacency Matrix Properties

- Running time to:
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathbf{V}|)$
- Decide if some edge exists: $\mathbf{O (1)}$
- Insert an edge: $\mathbf{O (1)}$
- Delete an edge: $\mathbf{O (1)}$

	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

- Space requirements:
- $|\mathrm{V}|^{2}$ bits
- Best for sparse or dense graphs?
- Best for dense graphs

Adjacency Matrix Properties

- How will the adjacency matrix look for an undirected graph?
- Undirected will be symmetric around the diagonal

Q	0	0	1
0	Q	0	0
0	0	Q	1
1	0	1	Q

- How can we adapt the representation for weighted graphs?
- Instead of a Boolean, store a number in each cell
- Need some value to represent 'not an edge'
- In some situations, 0 or -1 works

Adjacency List

- Assign each node a number from 0 to |V|-1
- An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
$O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge:
O (1) (unless you need to check if it's there)
- Delete an edge:
$O(d)$ where d is out-degree of source
- Space requirements:
- Good for sparse graphs
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
- Related: Determine if there even is such a path

Topological Sort

Problem: Given a DAG G=(V,E), output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output:

$$
126,142,143,374,373,417,410,413, X Y Z, 415
$$

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution
- Figuring out how CSE grad students make espresso

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} with in-degree of 0
b) Output vand mark it removed
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}

Example

Output:

Node: 126142143374373410413415417 XYZ Removed?

In-degree: 00 | | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Example

Output:
126

Node: 126142143374373410413415417 XYZ
Removed? x
In-degree: $00 \begin{array}{llllllllll} & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3\end{array}$
1

Example

Output: 126 142

Node: $\quad 126142143374373410413415417$ XYZ Removed? x x In-degree: 00 1
0

Example

Output: 126 142 143

Node: 126142143374373410413415417 XYZ Removed? x x x In-degree: 00

100
0

Example

| Node: | 126 | 142 | 143 | 374 | 373 | 410 | 413 | 415 | 417 | XYZ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Removed? | x | x | x | x | | | | | | |
| In-degree: | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
| | | | 1 | 0 | 0 | | | | | 2 |

Example

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	x	x	x	x	x					
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2

Example

Node:	126	142	143	374	373	410	413	415	417	XYZ
Removed?	x	x	x	x	x				x	
In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2

Example

Output: 126
142
143
374
373
417
410

Node: 126142143374373410413415417 XYZ Removed? x x $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ x $\begin{array}{lllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ & & & 0 & & & & & & & 1\end{array}$

Example

Output: 126
142
143
374
373
417
410
413

Node: $\quad 126142143374373410413415417$ XYZ Removed? x x x x x x x x $\begin{array}{lllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ & & & 0 & & & & & & & 1\end{array}$

Example

Output: 126 142 143
374
373
417
410
413
XYZ

Node: 126142143374373410413415417 XYZ Removed? x x x x $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ x x $\begin{array}{lllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\ & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ & & & 0 & & & & & & & 1\end{array}$

Example

Output:

Node: $\quad 126142143374373410413415417$ XYZ

In-degree:	0	0	2	1	1	1	1	1	1	3
			1	0	0	0	0	0	0	2
			0							1

Notice

- Needed a vertex with in-degree 0 to start
- Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
- Can be more than one correct answer, by definition, depending on the graph

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```

- What is the worst-case running time?
- Initialization $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}\right)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O (1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
a) $\mathbf{v}=$ dequeue()
b) Output \mathbf{v} and remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}, if new degree is 0 , enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
    w.indegree--;
        if(w.indegree==0)
            enqueue(v);
    }
}
```

- What is the worst-case running time?
- Initialization: $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|E|+|V|)$ - much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from \mathbf{v} (i.e., there exists a path from \mathbf{v})

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
- Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if(u is not marked) {
                mark u
                pending.add(u)
            }
    }
}
```


Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
- Use an adjacency list representation
- The order we traverse depends entirely on add and remove
- Popular choice: a stack "depth-first graph search" "DFS"
- Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: explore areas closer to the start node first

Example: Depth First Search (recursive)

- A tree is a graph and DFS and BFS are particularly easy to "see"

DFS(Node start) \{ mark and process start for each node u adjacent to start if u is not marked DFS(u)
\}

- ABDECFGH
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: Another Depth First Search (with stack)

- A tree is a graph and DFS and BFS are particularly easy to "see" DFS2(Node start) \{
 initialize stack s and push start mark start as visited while(s is not empty) \{
next = s.pop() // and "process" for each node u adjacent to next if(u is not marked) mark u and push onto s
- ACFHGBED
- A different but perfectly fine traversal, but is this DFS?
- DEPENDS ON THE ORDER YOU PUSH CHILDREN INTO STACK

Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see" BFS(Node start) \{

- ABCDEFGH
- A "level-order" traversal

Comparison when used for AI Search

- Breadth-first always finds a solution (a path) if one exists and there is enough memory.
- But depth-first can use less space in finding a path
- A third approach:
- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment \mathbf{K} and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Harder Problem: Add weights or costs to the graphs.

Find minimal cost paths from a vertex v to all other vertices.

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management

Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Many people have a favorite Dijkstra story, even if they never met him

