CSE373: Data Structures \& Algorithms

Lecture 18: Shortest Paths

Linda Shapiro

Winter 2015

Announcements

Graph Traversals

For an arbitrary graph and a starting node \mathbf{v}, find all nodes reachable from \mathbf{v} (i.e., there exists a path from \mathbf{v})

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Important Graph traversal algorithms:

- "Depth-first search" "DFS": recursively explore one part before going back to the other parts not yet explored
- "Breadth-first search" "BFS": explore areas closer to the start node first

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Many people have a favorite Dijkstra story, even if they never met him

Dijkstra's Algorithm

- Goal: Find the shortest path from a given start node to all other nodes in terms of the weights on the edges.
- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
- A series of steps
- At each one the locally optimal choice is made

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
- Pick closest unknown vertex \mathbf{v}
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from \mathbf{v}
- That's it!

The Algorithm

1. For each node \mathbf{v}, set v.cost $=\infty$ and v.known = false
2. Set source.cost = 0 // start node
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, \mathbf{u}) with weight \mathbf{w},
 $\mathbf{c 1}=\mathbf{v} \cdot \mathbf{c o s t}+\mathbf{w} / /$ cost of best path through \mathbf{v} to \mathbf{u}
$\mathbf{c 2}=\mathbf{u} \cdot \mathbf{c o s t} / /$ cost of best path to \mathbf{u} previously known
$\mathbf{i f (c 1 < c 2) \{ / / ~ i f ~ t h e ~ p a t h ~ t h r o u g h ~} \mathbf{v}$ is better
$\mathbf{u} \cdot \mathbf{c o s t}=\mathbf{c 1}$
\mathbf{u}. path $=\mathbf{v} / /$ for computing actual paths
$\}$

Example \#1

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

Interpreting the Results

- Now that we're done, how do we get the path from, say, A to E?

Stopping Short

- How would this have worked differently if we were only interested in:
- The path from A to G ?
- The path from A to E ?

Order Added to Known Set:
A, C, B, D, F, H, G, E

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#2

Order Added to Known Set:

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Order Added to Known Set:
A

vertex	known?	cost	path
A	Y	0	
B		$? ?$	
C		≤ 2	A
D		≤ 1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

Example \#2

Order Added to Known Set:
A, D, C

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C	Y	2	A
D	Y	1	A
E		≤ 2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E

vertex	known?	cost	path
A	Y	0	
B		≤ 3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

Order Added to Known Set:
A, D, C, E, B

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

A, D, C, E, B, F

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		≤ 6	D

Example \#2

A, D, C, E, B, F, G

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

Example \#3

How will the best-cost-so-far for Y proceed?
Is this expensive?

Example \#3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ... Is this expensive?

Example \#3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...
Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- At each step, always does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out Dijkstra's algorithm IS globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than \mathbf{v}
- Suppose the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

\}

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once
dijkstra(Graph G, Node start) \{ for each node: x.cost=infinity, x
start.cost $=0$
while(not all nodes are known) \{
b = find unknown node with smallest cost b.known = true
for each edge (b,a) in G
if(!a.known) if(b.cost + weight((b,a)) < a.cost)\{ a.cost $=$ b.cost + weight((b,a)) a.path $=$ b

```
}
```

\}

Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Improving (?) asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but takes some coding

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
        decreaseKey(a,"new cost - old cost")
                a.path = b
}
```


Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
        decreaseKey(a,"new cost - old cost")
                a.path = b
}
```


Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) \{
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
        if(b.cost + weight((b,a)) < a.cost)\{
        decreaseKey(a,"new cost - old cost"
                a.path = b
\}
```


Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
        decreaseKey(a,"new cost - old cost">}O(|E||og|V|
        a.path = b
        }
```


Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    build-heap with all nodes
    while(heap is not empty) \{
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
        if(b.cost + weight((b,a)) < a.cost)\{
        decreaseKey(a,"new cost - old cost" \(O(|E| l o g|V|)\)
                a.path = b
\}
```


Dense vs. sparse again

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \log |\mathrm{V}|+|E| \log |\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $O(|E| \log |\mathrm{V}|)$)
- Dense: $O\left(|\mathrm{~V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |ㅌ|

Spanning Trees

- A simple problem: Given a connected undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a minimal subset of edges such that \mathbf{G} is still connected
- A graph $\mathbf{G 2}$ =(V,E2) such that $\mathbf{G} \mathbf{2}$ is connected and removing any edge from E2 makes $\mathbf{G} 2$ disconnected

