
CSE373: Data Structures & Algorithms

Lecture 18: Shortest Paths

 Linda Shapiro
Winter 2015

Announcements

Winter 2015 2 CSE373: Data Structures & Algorithms

Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable
from v (i.e., there exists a path from v)

Basic idea:
– Keep following nodes
– But “mark” nodes after visiting them, so the traversal terminates

and processes each reachable node exactly once

Important Graph traversal algorithms:
• “Depth-first search” “DFS”: recursively explore one part before

going back to the other parts not yet explored
• “Breadth-first search” “BFS”: explore areas closer to the start node

first

Winter 2015 3 CSE373: Data Structures & Algorithms

Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
– Truly one of the “founders” of computer science;

this is just one of his many contributions
– Many people have a favorite Dijkstra story, even if they

never met him

Winter 2015 4 CSE373: Data Structures & Algorithms

Dijkstra’s Algorithm

• Goal: Find the shortest path from a given start node to all other
nodes in terms of the weights on the edges.

• The idea: reminiscent of BFS, but adapted to handle weights
– Grow the set of nodes whose shortest distance has been

computed
– Nodes not in the set will have a “best distance so far”
– A priority queue will turn out to be useful for efficiency

• An example of a greedy algorithm
– A series of steps
– At each one the locally optimal choice is made

Winter 2015 5 CSE373: Data Structures & Algorithms

Dijkstra’s Algorithm: Idea

Winter 2015 6 CSE373: Data Structures & Algorithms

• Initially, start node has cost 0 and all other nodes have cost ∞

• At each step:
– Pick closest unknown vertex v
– Add it to the “cloud” of known vertices
– Update distances for nodes with edges from v

• That’s it!

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5

The Algorithm

1. For each node v, set v.cost = ∞ and v.known = false
2. Set source.cost = 0 // start node
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w,
 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2){ // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
 }

Winter 2015 7 CSE373: Data Structures & Algorithms

v u

w

Example #1

Winter 2015 8 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 ∞ ∞

∞

∞

∞

∞

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??
H ??

5

Order Added to Known Set:

Example #1

Winter 2015 9 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 ∞ ∞

4

1

∞

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E ??
F ??
G ??
H ??

5

Order Added to Known Set:

A

Example #1

Winter 2015 10 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 ∞

∞

4

1

12

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ??
G ??
H ??

5

Order Added to Known Set:

A, C

Example #1

Winter 2015 11 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G ??
H ??

5

Order Added to Known Set:

A, C, B

Example #1

Winter 2015 12 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 4 ∞

4

1

12

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G ??
H ??

5

Order Added to Known Set:

A, C, B, D

Example #1

Winter 2015 13 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 4 7

4

1

12

∞

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ??
H ≤ 7 F

5

Order Added to Known Set:

A, C, B, D, F

Example #1

Winter 2015 14 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H

Example #1

Winter 2015 15 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G

Example #1

Winter 2015 16 CSE373: Data Structures & Algorithms

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

Features

• When a vertex is marked known,
the cost of the shortest path to that node is known
– The path is also known by following back-pointers

• While a vertex is still not known,

another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important

Winter 2015 CSE373: Data Structures & Algorithms 17

Interpreting the Results
• Now that we’re done, how do we get the path from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

Winter 2015 CSE373: Data Structures & Algorithms 18

Stopping Short
• How would this have worked differently if we were only interested in:

– The path from A to G?
– The path from A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

Winter 2015 CSE373: Data Structures & Algorithms 19

Example #2

Winter 2015 20 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 ∞

∞

∞

∞
∞

∞

2

1
2

vertex known? cost path
A 0
B ??
C ??
D ??
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

Example #2

Winter 2015 21 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 ∞

∞

2

1
∞

∞

2

1
2

vertex known? cost path
A Y 0
B ??
C ≤ 2 A
D ≤ 1 A
E ??
F ??
G ??

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A

Example #2

Winter 2015 22 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 6

7

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B ≤ 6 D
C ≤ 2 A
D Y 1 A
E ≤ 2 D
F ≤ 7 D
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D

Example #2

Winter 2015 23 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 6

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B ≤ 6 D
C Y 2 A
D Y 1 A
E ≤ 2 D
F ≤ 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C

Example #2

Winter 2015 24 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B ≤ 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F ≤ 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E

Example #2

Winter 2015 25 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F ≤ 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B

Example #2

Winter 2015 26 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G ≤ 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F

Example #2

Winter 2015 27 CSE373: Data Structures & Algorithms

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

Example #3

Winter 2015 28 CSE373: Data Structures & Algorithms

Y

X 1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?

Is this expensive?

…

Example #3

Winter 2015 29 CSE373: Data Structures & Algorithms

Y

X 1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive?

…

Example #3

Winter 2015 30 CSE373: Data Structures & Algorithms

Y

X 1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive? No, each edge is processed only once

…

A Greedy Algorithm

• Dijkstra’s algorithm
– For single-source shortest paths in a weighted graph (directed

or undirected) with no negative-weight edges

• An example of a greedy algorithm:
– At each step, always does what seems best at that step

• A locally optimal step, not necessarily globally optimal
– Once a vertex is known, it is not revisited

• Turns out Dijkstra’s algorithm IS globally optimal

Winter 2015 31 CSE373: Data Structures & Algorithms

Where are We?

• Had a problem: Compute shortest paths in a weighted graph with
no negative weights

• Learned an algorithm: Dijkstra’s algorithm

• What should we do after learning an algorithm?
– Prove it is correct

• Not obvious!
• We will sketch the key ideas

– Analyze its efficiency
• Will do better by using a data structure we learned earlier!

Winter 2015 32 CSE373: Data Structures & Algorithms

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

– True initially: shortest path to start node has cost 0
– If it stays true every time we mark a node “known”, then by

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t
discover a shorter path later!
– This holds only because Dijkstra’s algorithm picks the node

with the next shortest path-so-far
– The proof is by contradiction…

Winter 2015 33 CSE373: Data Structures & Algorithms

Correctness: The Cloud (Rough Sketch)

Winter 2015 34 CSE373: Data Structures & Algorithms

 The Known
Cloud

v Next shortest path from
inside the known cloud

w

Better path to
v? No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)
• The best-known path to v must have only nodes “in the cloud”

– Else we would have picked a node closer to the cloud than v
• Suppose the actual shortest path to v is different

– It won’t use only cloud nodes, or we would know about it
– So it must use non-cloud nodes. Let w be the first non-cloud node

on this path. The part of the path up to w is already known and
must be shorter than the best-known path to v. So v would not
have been picked. Contradiction.

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

Winter 2015 35 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

Winter 2015 36 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

O(|V|)

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

Winter 2015 37 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

O(|V|)

O(|V|2)

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

Winter 2015 38 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

O(|V|)

O(|V|2)

O(|E|)

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

Winter 2015 39 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

Improving asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2)
due to each iteration looking for the node to process next
– We solved it with a queue of zero-degree nodes
– But here we need the lowest-cost node and costs can

change as we process edges

• Solution?

Winter 2015 40 CSE373: Data Structures & Algorithms

Improving (?) asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2)
due to each iteration looking for the node to process next
– We solved it with a queue of zero-degree nodes
– But here we need the lowest-cost node and costs can

change as we process edges

• Solution?
– A priority queue holding all unknown nodes, sorted by cost
– But must support decreaseKey operation

• Must maintain a reference from each node to its current
position in the priority queue

• Conceptually simple, but takes some coding

Winter 2015 41 CSE373: Data Structures & Algorithms

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Winter 2015 42 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b
 }
}

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Winter 2015 43 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b
 }
}

O(|V|)

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Winter 2015 44 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b
 }
}

O(|V|)

O(|V|log|V|)

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Winter 2015 45 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b
 }
}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

Winter 2015 46 CSE373: Data Structures & Algorithms

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,“new cost – old cost”)
 a.path = b
 }
}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)

Dense vs. sparse again

• First approach: O(|V|2)

• Second approach: O(|V|log|V|+|E|log|V|)

• So which is better?
– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
– Dense: O(|V|2)

• But, remember these are worst-case and asymptotic
– Priority queue might have slightly worse constant factors
– On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|
more like |E|

Winter 2015 47 CSE373: Data Structures & Algorithms

Spanning Trees

• A simple problem: Given a connected undirected graph G=(V,E),
find a minimal subset of edges such that G is still connected
– A graph G2=(V,E2) such that G2 is connected and removing

any edge from E2 makes G2 disconnected

Winter 2015 48 CSE373: Data Structures & Algorithms

	CSE373: Data Structures & Algorithms��Lecture 18: Shortest Paths
	Announcements
	Graph Traversals
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm
	Dijkstra’s Algorithm: Idea
	The Algorithm
	Example #1
	Example #1
	Example #1
	Example #1
	Example #1
	Example #1
	Example #1
	Example #1
	Example #1
	Features
	Interpreting the Results
	Stopping Short
	Example #2
	Example #2
	Example #2
	Example #2
	Example #2
	Example #2
	Example #2
	Example #2
	Example #3
	Example #3
	Example #3
	A Greedy Algorithm
	Where are We?
	Correctness: Intuition
	Correctness: The Cloud (Rough Sketch)
	Efficiency, first approach
	Efficiency, first approach
	Efficiency, first approach
	Efficiency, first approach
	Efficiency, first approach
	Improving asymptotic running time
	Improving (?) asymptotic running time
	Efficiency, second approach
	Efficiency, second approach
	Efficiency, second approach
	Efficiency, second approach
	Efficiency, second approach
	Dense vs. sparse again
	Spanning Trees

