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Graph Traversals 

For an arbitrary graph and a starting node v, find all nodes reachable 
from v (i.e., there exists a path from v) 

 

Basic idea:  
– Keep following nodes 
– But “mark” nodes after visiting them, so the traversal terminates 

and processes each reachable node exactly once 
 

Important Graph traversal algorithms: 
• “Depth-first search”  “DFS”: recursively explore one part before 

going back to the other parts not yet explored 
• “Breadth-first search” “BFS”: explore areas closer to the start node 

first 

Winter 2015 3 CSE373: Data Structures & Algorithms 



Dijkstra’s Algorithm 

• Named after its inventor Edsger Dijkstra (1930-2002) 
– Truly one of the “founders” of computer science;                

this is just one of his many contributions 
– Many people have a favorite Dijkstra story, even if they 

never met him 
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Dijkstra’s Algorithm 

• Goal: Find the shortest path from a given start node to all other 
nodes in terms of the weights on the edges. 

• The idea: reminiscent of BFS, but adapted to handle weights 
– Grow the set of nodes whose shortest distance has been 

computed 
– Nodes not in the set will have a “best distance so far” 
– A priority queue will turn out to be useful for efficiency 

• An example of a greedy algorithm 
– A series of steps 
– At each one the locally optimal choice is made 
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Dijkstra’s Algorithm: Idea 
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• Initially, start node has cost 0 and all other nodes have cost ∞ 
 

• At each step: 
– Pick closest unknown vertex v 
– Add it to the “cloud” of known vertices 
– Update distances for nodes with edges from v 

 

• That’s it!   
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The Algorithm 

1. For each node v, set  v.cost = ∞ and v.known = false 
2. Set source.cost = 0 // start node  
3. While there are unknown nodes in the graph 

a) Select the unknown node v with lowest cost 
b) Mark v as known 
c) For each edge (v,u) with weight w, 
      c1 = v.cost + w // cost of best path through v to u    
     c2 = u.cost   // cost of best path to u previously known 
           if(c1 < c2){ // if the path through v is better 
          u.cost = c1 
                u.path = v // for computing actual paths 
      } 
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Example #1 
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Features 

• When a vertex is marked known,  
the cost of the shortest path to that node is known 
– The path is also known by following back-pointers 

 
• While a vertex is still not known,  

another shorter path to it might still be found 
 

Note: The “Order Added to Known Set” is not important 
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Interpreting the Results 
• Now that we’re done, how do we get the path from, say, A to E? 
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Stopping Short 
• How would this have worked differently if we were only interested in: 

– The path from A to G? 
– The path from A to E? 
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Example #2 
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Y 
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A Greedy Algorithm 

• Dijkstra’s algorithm 
– For single-source shortest paths in a weighted graph (directed 

or undirected) with no negative-weight edges 
 

• An example of a greedy algorithm:  
– At each step, always does what seems best at that step 

• A locally optimal step, not necessarily globally optimal 
– Once a vertex is known, it is not revisited 

• Turns out Dijkstra’s algorithm IS globally optimal 
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Where are We? 

• Had a problem: Compute shortest paths in a weighted graph with 
no negative weights 
 

• Learned an algorithm: Dijkstra’s algorithm 
 

• What should we do after learning an algorithm? 
– Prove it is correct 

• Not obvious! 
• We will sketch the key ideas 

– Analyze its efficiency 
• Will do better by using a data structure we learned earlier! 
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Correctness: Intuition 

Rough intuition:  
 
All the “known” vertices have the correct shortest path 

– True initially: shortest path to start node has cost 0 
– If it stays true every time we mark a node “known”, then by 

induction this holds and eventually everything is “known” 
 

Key fact we need: When we mark a vertex “known” we won’t 
discover a shorter path later! 
– This holds only because Dijkstra’s algorithm picks the node 

with the next shortest path-so-far 
– The proof is by contradiction… 
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Correctness: The Cloud (Rough Sketch) 
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    The Known 
Cloud 

v Next shortest path from  
inside the known cloud 

w 

Better path to 
v?  No! 

Source 

Suppose v is the next node to be marked known (“added to the cloud”) 
• The best-known path to v must have only nodes “in the cloud” 

–  Else we would have picked a node closer to the cloud than v 
• Suppose the actual shortest path to v is different 

– It won’t use only cloud nodes, or we would know about it 
– So it must use non-cloud nodes.  Let w be the first non-cloud node 

on this path.  The part of the path up to w is already known and 
must be shorter than the best-known path to v.  So v would not 
have been picked.  Contradiction. 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 

O(|V|) 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 

O(|V|) 

O(|V|2) 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 

O(|V|) 

O(|V|2) 

O(|E|) 



Efficiency, first approach 
Use pseudocode to determine asymptotic run-time 

– Notice each edge is processed only once 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  while(not all nodes are known) { 
    b = find unknown node with smallest cost 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
       if(b.cost + weight((b,a)) < a.cost){ 
         a.cost = b.cost + weight((b,a)) 
         a.path = b 
       } 
} 

O(|V|) 

O(|V|2) 

O(|E|) 

O(|V|2) 



Improving asymptotic running time 

• So far: O(|V|2) 
 

• We had a similar “problem” with topological sort being O(|V|2) 
due to each iteration looking for the node to process next 
– We solved it with a queue of zero-degree nodes 
– But here we need the lowest-cost node and costs can 

change as we process edges 
 

• Solution? 
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Improving (?) asymptotic running time 

• So far: O(|V|2) 
 

• We had a similar “problem” with topological sort being O(|V|2) 
due to each iteration looking for the node to process next 
– We solved it with a queue of zero-degree nodes 
– But here we need the lowest-cost node and costs can 

change as we process edges 
 

• Solution? 
– A priority queue holding all unknown nodes, sorted by cost 
– But must support decreaseKey operation 

• Must maintain a reference from each node to its current 
position in the priority queue 

• Conceptually simple, but takes some coding 
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Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 
      } 
} 



Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 
      } 
} 

O(|V|) 



Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 
      } 
} 

O(|V|) 

O(|V|log|V|) 



Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 
      } 
} 

O(|V|) 

O(|V|log|V|) 

O(|E|log|V|) 



Efficiency, second approach 
Use pseudocode to determine asymptotic run-time 
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dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 
  start.cost = 0 
  build-heap with all nodes 
  while(heap is not empty) { 
    b = deleteMin() 
    b.known = true 
    for each edge (b,a) in G 
     if(!a.known) 
      if(b.cost + weight((b,a)) < a.cost){ 
        decreaseKey(a,“new cost – old cost”) 
       a.path = b 
      } 
} 

O(|V|) 

O(|V|log|V|) 

O(|E|log|V|) 

O(|V|log|V|+|E|log|V|) 



Dense vs. sparse again 

• First approach: O(|V|2) 
 

• Second approach: O(|V|log|V|+|E|log|V|) 
 

• So which is better? 
– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|)) 
– Dense: O(|V|2) 

 

• But, remember these are worst-case and asymptotic 
– Priority queue might have slightly worse constant factors 
– On the other hand, for “normal graphs”, we might call 
decreaseKey rarely (or not percolate far), making |E|log|V| 
more like |E| 
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Spanning Trees 

• A simple problem: Given a connected  undirected graph G=(V,E), 
find a minimal subset of edges such that G is still connected 
– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected 
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