

CSE373: Data Structures and Algorithms

Lecture 2: Proof by Induction

Linda Shapiro Winter 2015

Background on Induction

- Type of mathematical proof
- Typically used to establish a given statement for all natural numbers (e.g. integers > 0)
- Proof is a sequence of deductive steps
 - 1. Show the statement is true for the first number.
 - 2. Show that if the statement is true for any one number, this implies the statement is true for the next number.
 - 3. If so, we can infer that the statement is true for all numbers.

Think about climbing a ladder

1. Show you can get to the first rung (base case)

2. Show you can get between rungs (inductive step)

3. Now you can climb forever.

Why you should care

- Induction turns out to be a useful technique
 - AVL trees
 - Heaps
 - Graph algorithms
 - Can also prove things like $3^n > n^3$ for $n \ge 4$
- Exposure to rigorous thinking

Example problem

- Find the sum of the integers from 1 to n
- 1 + 2 + 3 + 4 + ... + (n-1) + n

$$\sum_{i=1}^{n} i$$

- For any $n \ge 1$
- Could use brute force, but would be slow
- There's probably a clever shortcut

Finding the formula

- Shortcut will be some formula involving n
- Compare examples and look for patterns
 - Not something I will ask you to do!
- Start with n = 10:

$$1+2+3+4+5+6+7+8+9+10=???$$

- Large enough to be a pain to add up
- Worthwhile to find shortcut

Look for Patterns

- n = 1: 1
- n = 2: 1 + 2
- n = 3: 1 + 2 + 3
- n = 4: 1 + 2 + 3 + 4
- n = 5: 1 + 2 + 3 + 4 + 5
- n = 6: 1 + 2 + 3 + 4 + 5 + 6

 Someone solved this a long time ago. You probably learned it once in high school.

The general form

• We want something for any $n \ge 1$

$$\frac{n(n+1)}{2}$$

Are we done?

- The pattern seems pretty clear
 - Is there any reason to think it changes?
- We want something for any $n \ge 1$
- A mathematical approach is skeptical
- We must prove the formula works in all cases
 - A rigorous proof

- Prove the formula works for all cases.
- Induction proofs have four components:
- 1. The thing you want to prove, e.g., sum of integers from 1 to n = n(n+1)/2
- 2. The base case (usually "let n = 1"),
- 3. The assumption step ("assume true for n = k")
- 4. The induction step ("now let n = k + 1").

n and k are just variables!

- P(n) = sum of integers from 1 to n
- We need to do
 - Base case
 - Assumption
 - Induction step

prove for P(1)

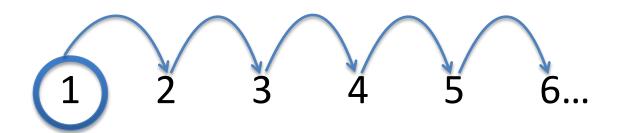
assume for P(k)

show for P(k+1)

n and k are just variables!

- P(n) = sum of integers from 1 to n
- We need to do
 - Base case
 - Assumption
 - Induction step

prove for P(1)
assume for P(k)
show for P(k+1)



- What we are trying to prove: P(n) = n(n+1)/2
- Base case

$$-P(1)=1$$

$$-1(1+1)/2 = 1(2)/2 = 1(1) = 1$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)
 - = 1 + 2 + ... + k + (k+1)

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)
 - = 1 + 2 + ... + k + (k+1)
 - = k(k+1)/2 + (k+1)

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:

```
- Now consider P(k+1)
```

```
= 1 + 2 + ... + k + (k+1)
```

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:

```
- Now consider P(k+1)
```

```
= 1 + 2 + ... + k + (k+1)
```

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$=(k+1)(k+2)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

```
= 1 + 2 + ... + k + (k+1)
```

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$=(k+1)(k+2)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$= (k+1)(k+2)/2 = (k+1)((k+1)+1)/2$$

- What we are trying to prove: P(n) = n(n+1)/2
- Assume true for k: P(k) = k(k+1)/2
- Induction step:
 - Now consider P(k+1)

$$= 1 + 2 + ... + k + (k+1)$$

$$= k(k+1)/2 + (k+1)$$

$$= k(k+1)/2 + 2(k+1)/2 = (k(k+1) + 2(k+1))/2$$

$$= (k+1)(k+2)/2 = (k+1)((k+1)+1)/2$$

We're done!

- P(n) = sum of integers from 1 to n
- We have shown
 - Base case
 - Assumption
 - Induction step

proved for P(1)

assumed for P(k)

proved for P(k+1)

Success: we have proved that P(n) is true for any integer $n \ge 1$ \bigcirc

Another one to try

- What is the sum of the first *n* powers of 2?
- \bullet 2⁰ + 2¹ + 2² + ... + 2ⁿ
- $k = 1: 2^0 = 1$
- k = 2: $2^0 + 2^1 = 1 + 2 = 3$
- k = 3: $2^0 + 2^1 + 2^2 = 1 + 2 + 4 = 7$
- k = 4: $2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15$
- For general n, the sum is 2ⁿ 1

How to prove it

P(n) = "the sum of the first n powers of 2 (starting at 0) is 2^n-1 "

Theorem: P(n) holds for all $n \ge 1$

Proof: By induction on *n*

- Base case: n=1. Sum of first 1 power of 2 is 2^0 , which equals $1 = 2^1 1$.
- Inductive case:
 - Assume the sum of the first k powers of 2 is 2^k-1
 - Show the sum of the first (k+1) powers of 2 is $2^{k+1}-1$

How to prove it

• The sum of the first k+1 powers of 2 is

$$2^0 + 2^1 + 2^2 + ... + 2^{(k-1)} + 2^k$$

sum of the first k powers of 2

by inductive hypothesis

$$= 2^{k}-1 + 2^{k}$$

$$= 2(2^{k})-1 = 2^{k+1}-1$$

End of Inductive Proofs!

Conclusion

- Mathematical induction is a technique for proving something is true for all integers starting from a small one, usually 0 or 1.
- A proof consists of three parts:
 - 1. Prove it for the base case.
 - 2. Assume it for some integer k.
 - 3. With that assumption, show it holds for k+1
- It can be used for complexity and correctness analyses.