
CSE373: Data Structure & Algorithms 
 

Lecture 20: Comparison Sorting 

Linda Shapiro 
Winter 2015 



Announcements 

 

Winter 2015 2 CSE373: Data Structures & Algorithms 



Why Study Sorting in this Class? 

• Unlikely you will ever need to reimplement a sorting algorithm yourself 
– Standard libraries will generally implement one or more (Java 

implements 2) 
 

• You will almost certainly use sorting algorithms 
– Important to understand relative merits and expected performance 
 

• Excellent set of algorithms for practicing analysis and comparing design 
techniques 
– Classic part of a data structures class, so you’ll be expected to know it 
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The main problem, stated carefully 

For now, assume we have n comparable elements in an array and 
we want to rearrange them to be in increasing order 

 

Input: 
– An array A of data records 
– A key value in each data record 
– A comparison function (consistent and total) 

 

Effect: 
– Reorganize the elements of A such that for any i and j,       

if i < j then A[i] ≤ A[j] 
– (Also, A must have exactly the same data it started with) 
– Could also sort in reverse order, of course 

 

An algorithm doing this is a comparison sort 
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Variations on the Basic Problem 
1. Maybe elements are in a linked list (could convert to array and  

back in linear time, but some algorithms needn’t do so) 
 

2. Maybe ties need to be resolved by “original array position” 
– Sorts that do this naturally are called stable sorts 
– Others could tag each item with its original position and 

adjust comparisons accordingly (non-trivial constant factors) 
 

3. Maybe we must not use more than O(1) “auxiliary space” 
– Sorts meeting this requirement are called in-place sorts 

 

4. Maybe we can do more with elements than just compare 
– Sometimes leads to faster algorithms 

 

5. Maybe we have too much data to fit in memory 
– Use an “external sorting” algorithm 
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Sorting: The Big Picture 

Surprising amount of neat stuff to say about sorting: 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort 
… 

Bucket sort 
Radix sort 

External 
sorting 



Insertion Sort 
• Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

• Alternate way of saying this: 
– Sort first two elements 
– Now insert 3rd element in order 
– Now insert 4th element in order 
– … 

 

• “Loop invariant”: when loop index is i, first i elements are sorted 
 
• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 

 
• Time?  
    Best-case  _____     Worst-case  _____     “Average” case ____ 
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Insertion Sort 
• Idea: At step k, put the kth element in the correct position among 

the first k elements 
 

• Alternate way of saying this: 
– Sort first two elements 
– Now insert 3rd element in order 
– Now insert 4th element in order 
– … 

 

• “Loop invariant”: when loop index is i, first i elements are sorted 
 
• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 

 
• Time?  
    Best-case   O(n)     Worst-case   O(n2)     “Average” case   O(n2) 
           start sorted           start reverse sorted       (see text)   
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Selection sort 
• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

• Alternate way of saying this: 
– Find smallest element, put it 1st 
– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd … 
 

•  “Loop invariant”: when loop index is i, first i elements are the i 
smallest elements in sorted order 

 

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 
 

• Time?  
    Best-case  _____     Worst-case  _____     “Average” case ____ 
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Selection sort 
• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k 
 

• Alternate way of saying this: 
– Find smallest element, put it 1st 
– Find next smallest element, put it 2nd 

– Find next smallest element, put it 3rd … 
 

•  “Loop invariant”: when loop index is i, first i elements are the i 
smallest elements in sorted order 

 

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html) 
 

• Time?  
    Best-case  O(n2)    Worst-case O(n2)     “Average” case O(n2) 
         Always T(1) = 1 and T(n) = n + T(n-1) 

 
 

Winter 2015 10 CSE373: Data Structures & Algorithms 

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html


Insertion Sort vs. Selection Sort 

• Different algorithms 
 

• Solve the same problem 
 

• Have the same worst-case and average-case asymptotic 
complexity 
– Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted” 
 

• Other algorithms are more efficient for large arrays that are not 
already almost sorted 
– Insertion sort may do well on small arrays 
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Aside: We Will Not Cover Bubble Sort 

• It is usually taught in introductory courses 
• It doesn’t have good asymptotic complexity: O(n2) 

 

• It’s not particularly efficient with respect to constant factors 
 

Basically, almost everything it is good at some other algorithm is at 
least as good at 

– Perhaps people teach it just because someone taught it to 
them? 
 

 

Fun, short, optional read:  
Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan, 
SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf 
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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 



Heap sort 

• Sorting with a heap is easy: 
– insert each arr[i]into a separate Heap, or better 

yet use buildHeap 
– for(i=0; i < arr.length; i++)       
     arr[i] = deleteMin(); 
 

• Worst-case running time: O(n log n) 
 

• We have the array-to-sort (arr) and the heap (Heap) 
– So this is not an in-place sort 
– There’s a trick to make it in-place… 
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In-place heap sort 

– Treat the initial array as a heap (via buildHeap) 
– When you delete the ith  element, put it at arr[n-i] 

• That array location isn’t needed for the heap anymore! 
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4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

But this reverse sorts –  
how would you fix that? 



Divide and conquer 

Very important technique in algorithm design 
 

1. Divide problem into smaller parts 
 

2. Independently solve the simpler parts  
– Think recursion 
– Or potential parallelism 

 
3. Combine solution of parts to produce overall solution 
 

(This technique has a long history.) 
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Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 
 
1. Mergesort:     Sort the left half of the elements (recursively) 
         Sort the right half of the elements (recursively) 
      Merge the two sorted halves into a sorted whole 
 
2. Quicksort:    Pick a “pivot” element  

     Divide elements into less-than pivot  
       and greater-than pivot 
     Sort the two divisions (recursively on each) 
     Answer is  
sorted-less-than then pivot then sorted-greater-than 
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Merge sort 

• To sort array from position lo to position hi: 
– If range is 1 element long, it is already sorted! (Base case) 
– Else:  

• Sort from lo to (hi+lo)/2 
• Sort from (hi+lo)/2 to hi 
• Merge the two halves together 

 

• Merging takes two sorted parts and sorts everything 
– O(n) but requires auxiliary space… 
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8 2 9 4 5 3 1 6 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 4 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 4 5 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 4 5 6 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 4 5 6 8 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 
copy back to 
original array) 



Example, focus on merging 

Start with:  
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8 2 9 4 5 3 1 6 

After recursion: 
(not magic )   

2 4 8 9 1 3 5 6 

Merge:  
Use 3 pointers 
and 1 more array 

1 2 3 4 5 6 8 9 

    (After merge, 
copy back to 
original array) 

1 2 3 4 5 6 8 9 



Example, Showing Recursion 
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8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 



Merge sort visualization 

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html 
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Swapping Original / Auxiliary Array (“best”) 

(Arguably easier to code up without recursion at all) 
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Merge by 1 
 
Merge by 2 
 
Merge by 4 
 
Merge by 8 
 
Merge by 16 
 

Copy if Needed 

• First recurse down to lists of size 1 
• As we return from the recursion, swap between arrays 



Linked lists and big data 
We defined sorting over an array, but sometimes you want to sort 

linked lists 
 

One approach: 
– Convert to array: O(n) 
– Sort: O(n log n) 
– Convert back to list: O(n) 

 

Or merge sort works very nicely on linked lists directly 
– Heapsort and quicksort do not 
– Insertion sort and selection sort do but they’re slower 

 

Merge sort is also the sort of choice for external sorting 
– Linear merges minimize disk accesses 
– And can leverage multiple disks to get streaming accesses 
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Analysis 

Having defined an algorithm and argued it is correct, we should 
analyze its running time and space: 

 
To sort n elements, we: 

– Return immediately if n=1 
– Else do 2 subproblems of size n/2 and then an O(n) merge 

 
Recurrence relation: 
  T(1) = c1 

      T(n) = 2T(n/2) + c2n 
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Analysis intuitively 
This recurrence is common you just “know” it’s O(n log n) 
 
Merge sort is relatively easy to intuit (best, worst, and average): 
• The recursion “tree” will have log n height 
• At each level we do a total amount of merging equal to n 
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Next lecture  

• Quick sort  
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