
CSE373: Data Structure & Algorithms

Lecture 20: Comparison Sorting

Linda Shapiro
Winter 2015

Announcements

Winter 2015 2 CSE373: Data Structures & Algorithms

Why Study Sorting in this Class?

• Unlikely you will ever need to reimplement a sorting algorithm yourself
– Standard libraries will generally implement one or more (Java

implements 2)

• You will almost certainly use sorting algorithms
– Important to understand relative merits and expected performance

• Excellent set of algorithms for practicing analysis and comparing design
techniques
– Classic part of a data structures class, so you’ll be expected to know it

Winter 2015 3 CSE373: Data Structures & Algorithms

The main problem, stated carefully

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
– An array A of data records
– A key value in each data record
– A comparison function (consistent and total)

Effect:
– Reorganize the elements of A such that for any i and j,

if i < j then A[i] ≤ A[j]
– (Also, A must have exactly the same data it started with)
– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort
Winter 2015 4 CSE373: Data Structures & Algorithms

Variations on the Basic Problem
1. Maybe elements are in a linked list (could convert to array and

back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”
– Sorts that do this naturally are called stable sorts
– Others could tag each item with its original position and

adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”
– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare
– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory
– Use an “external sorting” algorithm

Winter 2015 5 CSE373: Data Structures & Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Winter 2015 6 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:
– Sort first two elements
– Now insert 3rd element in order
– Now insert 4th element in order
– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?
 Best-case _____ Worst-case _____ “Average” case ____

Winter 2015 7 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:
– Sort first two elements
– Now insert 3rd element in order
– Now insert 4th element in order
– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?
 Best-case O(n) Worst-case O(n2) “Average” case O(n2)
 start sorted start reverse sorted (see text)
Winter 2015 8 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Selection sort
• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:
– Find smallest element, put it 1st
– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i
smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?
 Best-case _____ Worst-case _____ “Average” case ____

 Winter 2015 9 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Selection sort
• Idea: At step k, find the smallest element among the not-yet-

sorted elements and put it at position k

• Alternate way of saying this:
– Find smallest element, put it 1st
– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i
smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?
 Best-case O(n2) Worst-case O(n2) “Average” case O(n2)
 Always T(1) = 1 and T(n) = n + T(n-1)

Winter 2015 10 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic
complexity
– Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

• Other algorithms are more efficient for large arrays that are not
already almost sorted
– Insertion sort may do well on small arrays

Winter 2015 11 CSE373: Data Structures & Algorithms

Aside: We Will Not Cover Bubble Sort

• It is usually taught in introductory courses
• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to constant factors

Basically, almost everything it is good at some other algorithm is at
least as good at

– Perhaps people teach it just because someone taught it to
them?

Fun, short, optional read:
Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan,
SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf

Winter 2015 12 CSE373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Winter 2015 13 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Heap sort

• Sorting with a heap is easy:
– insert each arr[i]into a separate Heap, or better

yet use buildHeap
– for(i=0; i < arr.length; i++)
 arr[i] = deleteMin();

• Worst-case running time: O(n log n)

• We have the array-to-sort (arr) and the heap (Heap)
– So this is not an in-place sort
– There’s a trick to make it in-place…

Winter 2015 14 CSE373: Data Structures & Algorithms

In-place heap sort

– Treat the initial array as a heap (via buildHeap)
– When you delete the ith element, put it at arr[n-i]

• That array location isn’t needed for the heap anymore!

Winter 2015 15 CSE373: Data Structures & Algorithms

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

But this reverse sorts –
how would you fix that?

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts
– Think recursion
– Or potential parallelism

3. Combine solution of parts to produce overall solution

(This technique has a long history.)

Winter 2015 16 CSE373: Data Structures & Algorithms

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element

 Divide elements into less-than pivot
 and greater-than pivot
 Sort the two divisions (recursively on each)
 Answer is
sorted-less-than then pivot then sorted-greater-than

 Winter 2015 17 CSE373: Data Structures & Algorithms

Merge sort

• To sort array from position lo to position hi:
– If range is 1 element long, it is already sorted! (Base case)
– Else:

• Sort from lo to (hi+lo)/2
• Sort from (hi+lo)/2 to hi
• Merge the two halves together

• Merging takes two sorted parts and sorts everything
– O(n) but requires auxiliary space…

Winter 2015 18 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

Example, focus on merging

Start with:

Winter 2015 19 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 20 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 21 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 22 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 23 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3 4

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 24 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3 4 5

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 25 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3 4 5 6

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 26 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3 4 5 6 8

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 27 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3 4 5 6 8 9

 (After merge,
copy back to
original array)

Example, focus on merging

Start with:

Winter 2015 28 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:
(not magic)

2 4 8 9 1 3 5 6

Merge:
Use 3 pointers
and 1 more array

1 2 3 4 5 6 8 9

 (After merge,
copy back to
original array)

1 2 3 4 5 6 8 9

Example, Showing Recursion

Winter 2015 29 CSE373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

Merge sort visualization

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Winter 2015 30 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Swapping Original / Auxiliary Array (“best”)

(Arguably easier to code up without recursion at all)
Winter 2015 31 CSE373: Data Structures & Algorithms

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

• First recurse down to lists of size 1
• As we return from the recursion, swap between arrays

Linked lists and big data
We defined sorting over an array, but sometimes you want to sort

linked lists

One approach:
– Convert to array: O(n)
– Sort: O(n log n)
– Convert back to list: O(n)

Or merge sort works very nicely on linked lists directly
– Heapsort and quicksort do not
– Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting
– Linear merges minimize disk accesses
– And can leverage multiple disks to get streaming accesses

Winter 2015 32 CSE373: Data Structures & Algorithms

Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time and space:

To sort n elements, we:

– Return immediately if n=1
– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:
 T(1) = c1

 T(n) = 2T(n/2) + c2n

Winter 2015 33 CSE373: Data Structures & Algorithms

Analysis intuitively
This recurrence is common you just “know” it’s O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):
• The recursion “tree” will have log n height
• At each level we do a total amount of merging equal to n

Winter 2015 34 CSE373: Data Structures & Algorithms

Next lecture

• Quick sort

Winter 2015 35 CSE373: Data Structures & Algorithms

	CSE373: Data Structure & Algorithms��Lecture 20: Comparison Sorting
	Announcements
	Why Study Sorting in this Class?
	The main problem, stated carefully
	Variations on the Basic Problem
	Sorting: The Big Picture
	Insertion Sort
	Insertion Sort
	Selection sort
	Selection sort
	Insertion Sort vs. Selection Sort
	Aside: We Will Not Cover Bubble Sort
	The Big Picture
	Heap sort
	In-place heap sort
	Divide and conquer
	Divide-and-Conquer Sorting
	Merge sort
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, focus on merging
	Example, Showing Recursion
	Merge sort visualization
	Swapping Original / Auxiliary Array (“best”)
	Linked lists and big data
	Analysis
	Analysis intuitively
	Next lecture	

