
CSE373: Data Structure & Algorithms

Lecture 22: More Sorting

Linda Shapiro
Winter 2015

Announcements

Winter 2015 2 CSE373: Data Structures & Algorithms

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Merge sort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole

2. Quick sort: Pick a “pivot” element

 Divide elements into less-than pivot
 and greater-than pivot
 Sort the two divisions (recursively on each)
 Answer is sorted-less-than then pivot then
 sorted-greater-than

 Winter 2015 3 CSE373: Data Structures & Algorithms

Quick sort

• A divide-and-conquer algorithm
– Recursively chop into two pieces
– Instead of doing all the work as we merge together,

we will do all the work as we recursively split into halves
– Unlike merge sort, does not need auxiliary space

• O(n log n) on average , but O(n2) worst-case

• Faster than merge sort in practice?
– Often believed so
– Does fewer copies and more comparisons, so it depends on

the relative cost of these two operations!

Winter 2015 4 CSE373: Data Structures & Algorithms

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”

Winter 2015 5 CSE373: Data Structures & Algorithms

Think in Terms of Sets

Winter 2015 6 CSE373: Data Structures & Algorithms

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0 S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

Example, Showing Recursion

Winter 2015 7 CSE373: Data Structures & Algorithms

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

Details

Have not yet explained:

• How to pick the pivot element

– Any choice is correct: data will end up sorted
– But as analysis will show, want the two partitions to be about

equal in size

• How to implement partitioning
– In linear time
– In place

Winter 2015 8 CSE373: Data Structures & Algorithms

Pivots

• Best pivot?
– Median
– Halve each time

• Worst pivot?
– Greatest/least element
– Problem of size n - 1
– O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

Winter 2015 CSE373: Data Structures & Algorithms 9

Potential pivot rules

While sorting arr from lo to hi-1 …

• Pick arr[lo] or arr[hi-1]

– Fast, but worst-case occurs with mostly sorted input

• Pick random element in the range
– Does as well as any technique, but (pseudo)random number

generation can be slow
– Still probably the most elegant approach

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

– Common heuristic that tends to work well

Winter 2015 10 CSE373: Data Structures & Algorithms

Partitioning

• Conceptually simple, but hardest part to code up correctly
– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):

1. Swap pivot with arr[lo]
2. Use two pointers i and j, starting at lo+1 and hi-1
3. while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Winter 2015 11 CSE373: Data Structures & Algorithms

Example

• Step one: pick pivot as median of 3
– lo = 0, hi = 10

Winter 2015 12 CSE373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move pointers

Swap

Move pointers

Move pivot

Winter 2015 13 CSE373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Quick sort visualization

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Winter 2015 14 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Analysis

• Best-case: Pivot is always the median
 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as merge sort: O(n log n)

• Worst-case: Pivot is always smallest or largest element
 T(0)=T(1)=1
 T(n) = 1T(n-1) + n
 Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)

– O(n log n), not responsible for proof (in text)

Winter 2015 15 CSE373: Data Structures & Algorithms

Cutoffs

• For small n, all that recursion tends to cost more than doing a
quadratic sort
– Remember asymptotic complexity is for large n

• Common engineering technique: switch algorithm below a cutoff

– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:
– Could also use a cutoff for merge sort
– Cutoffs are also the norm with parallel algorithms

• Switch to sequential algorithm
– None of this affects asymptotic complexity

Winter 2015 16 CSE373: Data Structures & Algorithms

How Fast Can We Sort?

• Heapsort & mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running time

• These bounds are all tight, actually Θ(n log n)

• Comparison sorting in general is Ω (n log n)
– An amazing computer-science result: proves all the clever

programming in the world cannot comparison-sort in linear
time

Winter 2015 17 CSE373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Winter 2015 18 CSE373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

How???
• Change the model – assume
 more than “compare(a,b)”

Bucket Sort (a.k.a. BinSort)
• If all values to be sorted are known to be integers between 1

and K (or any small range):
– Create an array of size K
– Put each element in its proper bucket (a.k.a. bin)
– If data is only integers, no need to store more than a count of

how times that bucket has been used
• Output result via linear pass through array of buckets

Winter 2015 19 CSE373: Data Structures & Algorithms

count array

1 3
2 1
3 2
4 2
5 3

• Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

Visualization

• http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Winter 2015 20 CSE373: Data Structures & Algorithms

http://www.cs.usfca.edu/~galles/visualization/CountingSort.html

Analyzing Bucket Sort

• Overall: O(n+K)
– Linear in n, but also linear in K
– Ω(n log n) lower bound does not apply because this is not a

comparison sort

• Good when K is smaller (or not much larger) than n
– We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n

– Wasted space; wasted time during linear O(K) pass

• For data in addition to integer keys, use list at each bucket

Winter 2015 21 CSE373: Data Structures & Algorithms

Bucket Sort with Data
What does this look like?

• Most real lists aren’t just keys; we have data
• Each bucket is a list (say, linked list)
• To add to a bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

1

2

3

4

5

• Example: Movie ratings;
scale 1-5;1=bad, 5=excellent
Input=
 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original

Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
•Easy to keep ‘stable’; Casablanca still before Star Wars

Winter 2015 22 CSE373: Data Structures & Algorithms

Sorting massive data

• Need sorting algorithms that minimize disk/tape access time:
– Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses
– Merge sort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

• Merge sort is the basis of massive sorting

• Merge sort can leverage multiple disks

23 CSE373: Data Structures & Algorithms Fall 2013

External Merge Sort

• Sort 900 MB using 100 MB RAM
– Read 100 MB of data into memory
– Sort using conventional method (e.g. quicksort)
– Write sorted 100MB to temp file
– Repeat until all data in sorted chunks (900/100 = 9 total)

• Read first 10 MB of each sorted chuck, merge into remaining
10MB
– writing and reading as necessary
– Single merge pass instead of log n
– Additional pass helpful if data much larger than memory

• Parallelism and better hardware can improve performance
• Distribution sorts (similar to bucket sort) are also used

Winter 2015 24 CSE373: Data Structures & Algorithms

	CSE373: Data Structure & Algorithms��Lecture 22: More Sorting
	Announcements
	Divide-and-Conquer Sorting
	Quick sort
	Quicksort Overview
	Think in Terms of Sets
	Example, Showing Recursion
	Details
	Pivots
	Potential pivot rules
	Partitioning
	Example
	Example
	Quick sort visualization
	Analysis
	Cutoffs
	How Fast Can We Sort?
	The Big Picture
	Bucket Sort (a.k.a. BinSort)
	Visualization
	Analyzing Bucket Sort
	Bucket Sort with Data�What does this look like?
	Sorting massive data
	External Merge Sort

