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Divide-and-Conquer Sorting 

Two great sorting methods are fundamentally divide-and-conquer 
 
1. Merge sort:     Sort the left half of the elements (recursively) 
         Sort the right half of the elements (recursively) 
      Merge the two sorted halves into a sorted whole 
 
2. Quick sort:    Pick a “pivot” element  

     Divide elements into less-than pivot  
       and greater-than pivot 
     Sort the two divisions (recursively on each) 
     Answer is sorted-less-than then pivot then     
                      sorted-greater-than 
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Quick sort 

• A divide-and-conquer algorithm 
– Recursively chop into two pieces 
– Instead of doing all the work as we merge together,  

we will do all the work as we recursively split into halves 
– Unlike merge sort, does not need auxiliary space 

 

• O(n log n) on average , but O(n2) worst-case  
 

• Faster than merge sort in practice? 
– Often believed so 
– Does fewer copies and more comparisons, so it depends on 

the relative cost of these two operations! 
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Quicksort Overview 

1. Pick a pivot element 
 

2. Partition all the data into: 
A. The elements less than the pivot 
B. The pivot 
C. The elements greater than the pivot 

 
3. Recursively sort A and C 

 
4. The answer is, “as simple as A, B, C”  
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Think in Terms of Sets 
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[Weiss] 



Example, Showing Recursion 
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Details 

Have not yet explained: 
 
• How to pick the pivot element 

– Any choice is correct: data will end up sorted 
– But as analysis will show, want the two partitions to be about 

equal in size 
 

• How to implement partitioning 
– In linear time 
– In place 
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Pivots 

• Best pivot? 
– Median 
– Halve each time 

 
 
 

• Worst pivot? 
– Greatest/least element 
– Problem of size n - 1 
– O(n2) 
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1 
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Potential pivot rules 

While sorting arr from lo to hi-1 … 
 
• Pick arr[lo] or arr[hi-1] 

– Fast, but worst-case occurs with mostly sorted input 
 

• Pick random element in the range 
– Does as well as any technique, but (pseudo)random number 

generation can be slow 
– Still probably the most elegant approach 

 
• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 

– Common heuristic that tends to work well 
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Partitioning 

• Conceptually simple, but hardest part to code up correctly 
– After picking pivot, need to partition in linear time in place 

 
• One approach (there are slightly fancier ones): 

1. Swap pivot with arr[lo] 
2. Use two pointers i and j, starting at lo+1 and hi-1 
3. while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4. Swap pivot with arr[i] * 
 

*skip step 4 if pivot ends up being least element 
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Example 

• Step one: pick pivot as median of 3 
– lo = 0, hi = 10 
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6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

• Step two: move pivot to the lo position 
 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



Example 

Now partition in place 
 
 
Move pointers 
 
 
Swap 
 
Move pointers 
 
 
Move pivot 
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6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  
one swap during partition –  
this is a short example 

5 1 4 2 0 3 6 9 7 8 



Quick sort visualization 

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html 
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http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html


Analysis 

• Best-case: Pivot is always the median 
  T(0)=T(1)=1 
  T(n)=2T(n/2) + n           -- linear-time partition 
  Same recurrence as merge sort: O(n log n) 
 
• Worst-case: Pivot is always smallest or largest element 
  T(0)=T(1)=1 
              T(n) = 1T(n-1)  + n    
  Basically same recurrence as selection sort: O(n2) 
 
• Average-case (e.g., with random pivot) 

– O(n log n), not responsible for proof (in text) 
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Cutoffs 

• For small n, all that recursion tends to cost more than doing a 
quadratic sort 
– Remember asymptotic complexity is for large n 

 
• Common engineering technique: switch algorithm below a cutoff 

– Reasonable rule of thumb: use insertion sort for n < 10 
 

• Notes: 
– Could also use a cutoff for merge sort 
– Cutoffs are also the norm with parallel algorithms  

• Switch to sequential algorithm 
– None of this affects asymptotic complexity 
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How Fast Can We Sort? 

• Heapsort & mergesort have O(n log n) worst-case running time 
 

• Quicksort has O(n log n) average-case running time 
 

• These bounds are all tight, actually Θ(n log n) 
 

• Comparison sorting in general is Ω (n log n) 
– An amazing computer-science result: proves all the clever 

programming in the world cannot comparison-sort in linear 
time 
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The Big Picture 

Surprising amount of juicy computer science: 2-3 lectures… 
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Simple 
algorithms: 

O(n2) 

Fancier 
algorithms: 
O(n log n) 

Comparison 
lower bound: 
Ω(n log n) 

Specialized 
algorithms: 

O(n) 

Handling 
huge data 

sets 

Insertion sort 
Selection sort 
Shell sort 
… 

Heap sort 
Merge sort 
Quick sort (avg) 
… 

Bucket sort 
Radix sort 

External 
sorting 

How??? 
•  Change the model – assume     
   more than “compare(a,b)” 



Bucket Sort (a.k.a. BinSort) 
• If all values to be sorted are known to be integers between 1 

and K (or any small range): 
– Create an array of size K  
– Put each element in its proper bucket (a.k.a. bin) 
– If data is only integers, no need to store more than a count of 

how times that bucket has been used 
• Output result via linear pass through array of buckets 
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count array 

1 3 
2 1 
3 2 
4 2 
5 3 

• Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 
 

   output: 1,1,1,2,3,3,4,4,5,5,5 



Visualization 

• http://www.cs.usfca.edu/~galles/visualization/CountingSort.html 
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Analyzing Bucket Sort 

• Overall: O(n+K) 
– Linear in n, but also linear in K 
– Ω(n log n) lower bound does not apply because this is not a 

comparison sort 
 

• Good when K is smaller (or not much larger) than n 
– We don’t spend time doing comparisons of duplicates 

 
• Bad when K is much larger than n 

– Wasted space; wasted time during linear O(K) pass 
 

• For data in addition to integer keys, use list at each bucket 
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Bucket Sort with Data 
What does this look like? 

• Most real lists aren’t just keys; we have data 
• Each bucket is a list (say, linked list) 
• To add to a bucket, insert in O(1) (at beginning, or keep pointer to 

last element) 

count array 

1 

2 

3 

4 

5 

• Example: Movie ratings; 
scale 1-5;1=bad, 5=excellent 
Input= 
 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original 

Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars 
•Easy to keep ‘stable’; Casablanca still before Star Wars 
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Sorting massive data 
 

• Need sorting algorithms that minimize disk/tape access time: 
– Quicksort and Heapsort both jump all over the array, leading to 

expensive random disk accesses 
– Merge sort scans linearly through arrays, leading to (relatively) 

efficient sequential disk access 
 

• Merge sort is the basis of massive sorting 
 

• Merge sort can leverage multiple disks 
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External Merge Sort 

• Sort 900 MB using 100 MB RAM 
– Read 100 MB of data into memory 
– Sort using conventional method (e.g. quicksort) 
– Write sorted 100MB to temp file 
– Repeat until all data in sorted chunks (900/100 = 9 total) 

• Read first 10 MB of each sorted chuck, merge into remaining 
10MB 
– writing and reading as necessary 
– Single merge pass instead of log n 
– Additional pass helpful if data much larger than memory 

• Parallelism and better hardware can improve performance 
• Distribution sorts (similar to bucket sort) are also used 
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