CSE373: Data Structures \& Algorithms Lecture 23: Applications

Linda Shapiro
Winter 2015

Announcements

Other Data Structures and Algorithms

- Quadtrees: used in spatial applications like geography and image processing
- Octrees: used in vision and graphics
- Image pyramids: used in image processing and computer vision
- Backtracking search: used in AI and vision
- Graph matching: used in AI and vision

Quadtrees

- Finkel and Bentley, 1974
- Lots of work by Hanan Samet, including a book
- Raster structure: divides space, not objects
- Form of block coding: compact storage of a large 2dimensional array
- Vector versions exist too

Quadtrees, the idea

1, 4, 16, 64, 256 nodes

Quadtrees, the idea

Quadtrees

- Grid with 2^{k} times 2^{k} pixels
- Depth is $k+1$
- Internal nodes always have 4 children
- Internal nodes represent a non-homogeneous region
- Leaves represent a homogeneous region and store the common value (or name)

Quadtree complexity theorem

- A subdivision with boundary length r pixels in a grid of 2^{k} times 2^{k} gives a quadtree with $\mathrm{O}(k \cdot r)$ nodes.
- Idea: two adjacent, different pixels "cost" at most 2 paths in the quadtree.

Overlay with quadtrees

Water

Acid rain with PH below 4.5

Result of overlay

Various queries

- Point location: trivial
- Windowing: descend into subtree(s) that intersect query window
- Traversal boundary polygon: up and down in the quadtree

Octrees

- Like quadtrees, but for 3D applications.
- Breaks 3D space into octants
- Useful in graphics for representing 3D objects at different resolutions

Hfierarchical space carving

- Big cubes \Rightarrow fast, poor results
- Small cubes \Rightarrow slow, more accurate results
- Combination $=$ octrees

RULES: •cube's out \Rightarrow done

- cube's in \Rightarrow done
- else $\quad \Rightarrow$ recurse

The rest of the chair

Same for a busky pup

Optimining the dad mesh

Registered points

Initial mesh

Optimized mesh

Our viewer

Image Pyramids

Mean Pyramid

Bottom level is the original image.

Gaussian Pyramid At each level, image is smoothed and reduced in size.

At $2^{\text {nd }}$ level, each pixel is the result of applying a Gaussian mask to the first level and then subsampling to reduce the size.

Bottom level is the original image.

Example: Subsampling with Gaussian pre-

 filtering

G 1/8
G 1/4

Gaussian 1/2

Backtracking Search in AI/Vision

- Start at the root of a search tree at a "state"
- Generate children of that state
- For each child
- If the child is the goal, done
- If the child does not satisfy the constraints of the problem, ignore it and keep going in this loop
- Else call the search recursively for this child
- Return

This is called backtracking, because if it goes through all children of a node and finds no solution, it returns to the parent and continues with the children of that parent.

Graph Matching

Input: 2 digraphs G1 = (V1,E1), G2 = (V2,E2)
Questions to ask:

1. Are G1 and G2 isomorphic?
2. Is G1 isomorphic to a subgraph of G2?
3. How similar is G1 to G2?
4. How similar is G1 to the most similar subgraph of G2?

Isomorphism for Digraphs

G1 is isomorphic to $\mathbf{G} 2$ if there is a 1-1, onto mapping $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ such that (vi, vj) $\in \mathrm{E} 1 \mathrm{iff}(\mathrm{h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})) \in \mathrm{E} 2$.

G2

Find an isomorphism $h:\{1,2,3,4,5\} \rightarrow\{a, b, c, d, e\}$. Check that the condition holds for every edge.

Answer: $h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d$

Isomorphism for Digraphs

G1 is isomorphic to $\mathbf{G} 2$ if there is a 1-1, onto mapping $\mathrm{h}: \mathrm{V} 1 \rightarrow \mathrm{~V} 2$ such that (vi, vj) $\in \mathrm{E} 1 \mathrm{iff}(\mathrm{h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})) \in \mathrm{E} 2$

G2

Answer: $h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5)=d$
$(1,2) \in E 1$ and $(h(1), h(2))=(b, e) \in E 2$.
$(2,1) \in E 1$ and $(e, b) \in E 2$.
$(2,5) \in E 1$ and $(e, d) \in E 2$.
$(3,1) \in E 1$ and $(c, b) \in E 2$.
$(3,2) \in E 1$ and $(c, e) \in E 2$.

Subgraph Isomorphism for Digraphs

G1 is isomorphic to a subgraph of G2 if there is a 1-1 mapping $h: V 1 \rightarrow V 2$ such that $(v i, v j) \in E 1 \Rightarrow(h(v i), h(v j)) \in E 2$.

Isomorphism and subgraph isomorphism are defined similarly for undirected graphs.

In this case, when (vi,vj) \in E1, either (vi,vj) or (vj,vi) can be listed in E2, since they are equivalent and both mean $\{\mathrm{vi}, \mathrm{vj}\}$.

Subgraph Isomorphism for Graphs

G1 is isomorphic to a subgraph of G2 if there is a 1-1 mapping $h: V 1 \rightarrow \mathrm{~V} 2$ such that $\{v i, v j\} \in \mathrm{E} 1 \Rightarrow\{\mathrm{~h}(\mathrm{vi}), \mathrm{h}(\mathrm{vj})\} \in \mathrm{E} 2$.

Because there are no directed edges, there are more possible mappings.

1	2	3
c	b	d

c d b (shown on graph)
b c d
b d c
d b c
d c b

Graph Matching Algorithms: Subgraph Isomorphism for Digraph

Given model graph M = (VM,EM) data graph $\mathrm{D}=(\mathrm{VD}, \mathrm{ED})$

Find 1-1 mapping $\mathrm{h}: \mathrm{VM} \rightarrow \mathrm{VD}$
satisfying (vi,vj) $\in E M \Rightarrow((h(v i), h(v j)) \in E D$.

Method: Recursive Backtracking Tree Search (Order is depth first, leftmost child first.)

$(1,2) \in M$, but $(a, b), \in D$

Application to Computer Vision

Find the house model in the image graph.

More Examples

RIO: Relational Indexing for Object Recognition

- RIO worked with industrial parts that could have
- planar surfaces
- cylindrical surfaces
- threads

Object Representation in RIO

- 3D objects are represented by a 3D mesh and set of 2D view classes.
- Each view class is represented by an attributed graph whose nodes are features and whose attributed edges are relationships.
- Graph matching is done through an indexing method, not covered here.

RIO Features

ellipses

parallel lines close and far

coaxials

L
junctions

V

 res

Y
Z
triples

RIO Relationships

- share one arc
- share one line
- share two lines

- coaxial
- close at extremal points
- bounding box encloses / enclosed by

Graph Representation

This is just a piece of the whole graph.

Sample Alignments 3D to 2D Perspective Projection

(a)

(b)

Fergus Object Recognition by Parts:

- Enable Computers to Recognize Different Categories of Objects in Images.

Model: Constellation Of Parts

Fischler \& Elschlager, 1973

Motorbikes

