
CSE373: Data Structures and Algorithms

Lecture 3: Math Review; Algorithm Analysis

Linda Shapiro
Winter 2015

Today

• Registration should be done.
• Homework 1 due 11:59 pm next Wednesday, January 14
• Review math essential to algorithm analysis

– Proof by induction (review example)
– Exponents and logarithms
– Floor and ceiling functions

• Begin algorithm analysis

CSE 373: Data Structures & Algorithms 2 Winter 2015

Mathematical induction
Suppose P(n) is some statement (mentioning integer n)

Example: n ≥ n/2 + 1

We can use induction to prove P(n) for all integers n ≥ n0.
We need to
1. Prove the “base case” i.e. P(n0). For us n0 is usually 1.
2. Assume the statement holds for P(k).
3. Prove the “inductive case” i.e. if P(k) is true, then P(k+1) is true.

Why we care:
 To show an algorithm is correct or has a certain running time
 no matter how big a data structure or input value is
 (Our “n” will be the data structure or input size.)

CSE 373: Data Structures & Algorithms 3 Winter 2015

Review Example
P(n) = “the sum of the first n powers of 2 (starting at 20) is 2n-1”

 20 + 21 + 22 + … + 2n-1 = 2n - 1.

in other words: 1 + 2 + 4 + … + 2n-1 = 2n - 1.

CSE 373: Data Structures & Algorithms 4 Winter 2015

Review Example
P(n) = “the sum of the first n powers of 2 (starting at 20) is 2n-1”

We will show that P(n) holds for all n ≥ 1
Proof: By induction on n
• Base case: n=1. Sum of first 1 power of 2 is 20 , which equals 1.
 And for n=1, 2n-1 equals 1.

CSE 373: Data Structures & Algorithms 5 Winter 2015

Review Example
P(n) = “the sum of the first n powers of 2 (starting at 20) is 2n-1”

• Inductive case:

– Assume P(k) is true i.e. the sum of the first k powers of 2 is 2k-1
– Show P(k+1) is true i.e. the sum of the first (k+1) powers of 2 is 2k+1-1

Using our assumption, we know the first k powers of 2 is
 20 + 21 + 22 + … + 2k-1 = 2k - 1

Add the next power of 2 to both sides…
 20 + 21 + 22 + … + 2k-1 + 2k = 2k - 1 + 2k

We have what we want on the left; massage the right a bit:
 20 + 21 + 22 + … + 2k-1 + 2k = 2(2k) – 1
 = 2k+1 – 1

Success!

CSE 373: Data Structures & Algorithms 6 Winter 2015

Mathematical Preliminaries

• The following N slides contain basic
mathematics needed for analyzing
algorithms.

• You should actually know this stuff.

• Hang in there!

Winter 2015 7 CSE 373: Data Structures & Algorithms

Logarithms and Exponents
• Definition: x = 2y if log2 x = y

– 8 = 23, so log2 8 = 3
– 65536= 216, so log2 65536 = 16

• The exponent of a number says how many times to use the

number in a multiplication. e.g. 23 = 2 × 2 × 2 = 8
 (2 is used 3 times in a multiplication to get 8)

• A logarithm says how many of one number to multiply to get

another number. It asks "what exponent produced this?”
 e.g. log28 = 3 (2 makes 8 when used 3 times in a multiplication)

CSE 373: Data Structures & Algorithms 8 Winter 2015

Logarithms and Exponents
• Definition: x = 2y if log2 x = y

– 8 = 23, so log2 8 = 3
– 65536= 216, so log2 65536 = 16

• Since so much is binary in CS, log almost always means log2
• log2 n tells you how many bits needed to represent n combinations.
• So, log2 1,000,000 = “a little under 20”

• Logarithms and exponents are inverse functions. Just as exponents

grow very quickly, logarithms grow very slowly.

CSE 373: Data Structures & Algorithms 9 Winter 2015

Logarithms and Exponents

n

CSE 373: Data Structures & Algorithms 10 Winter 2015

Logarithms and Exponents

n

CSE 373: Data Structures & Algorithms 11 Winter 2015

Logarithms and Exponents

n

CSE 373: Data Structures & Algorithms 12 Winter 2015

Logarithms and Exponents
See Excel file
for plot data –
play with it!

n

CSE 373: Data Structures & Algorithms 13 Winter 2015

Properties of logarithms

• log(A*B) = log A + log B

• log(Nk)= k log N

• log(A/B) = log A – log B

• log(log x) is written log log x
– Grows as slowly as 22 grows quickly

• (log x)(log x) is written log2x

– It is greater than log x for all x > 2
– It is not the same as log log x

y

CSE 373: Data Structures & Algorithms 14 Winter 2015

Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
– And we are about to stop worrying about constant factors!
– In particular, log2 x = 3.22 log10 x
– In general we can convert log bases via a constant multiplier
– To convert from base B to base A:

 logB x = (logA x) / (logA B)

• I use this because my calculator doesn’t have
log2.

 CSE 373: Data Structures & Algorithms 15 Winter 2015

Floor and ceiling

 X

 X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

 2232.722.7 =−=−=

 2222.332.3 =−=−=

CSE 373: Data Structures & Algorithms 16 Winter 2015

Facts about floor and ceiling

 integer an is n ifnn/2n/23.
1XXX2.

XX1X1.

=+
+<≤
≤<−

CSE 373: Data Structures & Algorithms 17 Winter 2015

Algorithm Analysis

As the “size” of an algorithm’s input grows (integer, length of array,
size of queue, etc.), we want to know
– How much longer does the algorithm take to run? (time)
– How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only

“which curve we are like”

Separate issue: Algorithm correctness – does it produce the right
answer for all inputs
– Usually more important, naturally

CSE 373: Data Structures & Algorithms 18 Winter 2015

Algorithm Analysis: A first example
• Consider the following program segment:
 x:= 0;

 for i = 1 to n do

 for j = 1 to i do

 x := x + 1;

• What is the value of x at the end?

1 1 to 1 1
2 1 to 2 3
3 1 to 3 6
4 1 to 4 10
…
n 1 to n ?

= 1 + 2 + 3 + … + (n-1) + n

i j x

Number of times x gets incremented is

= n*(n+1)/2

CSE 373: Data Structures & Algorithms 19 Winter 2015

Analyzing the loop
• Consider the following program segment:
 x:= 0;

 for i = 1 to n do

 for j = 1 to i do

 x := x + 1;

• The total number of loop iterations is n*(n+1)/2

– This is a very common loop structure, worth memorizing
– This is proportional to n2 , and we say O(n2), “big-Oh of”

• n*(n+1)/2 = (n2+ n)/2 = 1/2n2 + 1/2n

• For large enough n, the lower order and constant terms
are irrelevant, as are the assignment statements

• See plot… (n2+ n)/2 vs. just n2/2

CSE 373: Data Structures & Algorithms 20 Winter 2015

Lower-order terms don’t matter

n*(n+ 1)/2 vs. just n2/2

We just say O(n2)

CSE 373: Data Structures & Algorithms 21 Winter 2015

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n) “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant)
O(kn) exponential (where k is any constant > 1)
O(n!) factorial

Note: “exponential” does not mean “grows really fast”, it means
“grows at rate proportional to kn for some k>1”

CSE 373: Data Structures & Algorithms 22 Winter 2015

Big-O running times

• For a processor capable of one million instructions per second

CSE 373: Data Structures & Algorithms 23 Winter 2015

Analyzing code

Basic operations take “some amount of” constant time
– Arithmetic (fixed-width)
– Assignment
– Access one Java field or array index
– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of times
Conditionals Time of test plus slower branch
Loops Sum of iterations
Calls Time of call’s body
Recursion Solve recurrence equation

 (next lecture)

CSE 373: Data Structures & Algorithms 24 Winter 2015

Analyzing code

1. Add up time for all parts of the algorithm
 e.g. number of iterations = (n2+ n)/2
2. Eliminate low-order terms i.e. eliminate n: (n2)/2
3. Eliminate coefficients i.e. eliminate 1/2: (n2) : Result is O(n2)

Examples:

– 4n + 5
– 0.5n log n + 2n + 7
– n3 + 2n + 3n
– 365

= O(n)
= O(n log n)
= O(2n)
= O(1)

CSE 373: Data Structures & Algorithms 25 Winter 2015

Try a Java sorting program

Winter 2015 CSE 373: Data Structures & Algorithms 26

private static void bubbleSort(int[] intArray) {
int n = intArray.length;
 int temp = 0;

 for(int i=0; i < n; i++){
 for(int j=1; j < (n-i); j++){

 if(intArray[j-1] > intArray[j]){
 //swap the elements!
 temp = intArray[j-1];
 intArray[j-1] = intArray[j];
 intArray[j] = temp;
 }}}}

	CSE373: Data Structures and Algorithms��Lecture 3: Math Review; Algorithm Analysis
	Today
	Mathematical induction
	Review Example
	Review Example
	Review Example
	Mathematical Preliminaries
	Logarithms and Exponents
	Logarithms and Exponents
	Logarithms and Exponents
	Logarithms and Exponents
	Logarithms and Exponents
	Logarithms and Exponents
	Properties of logarithms
	Log base doesn’t matter much!
	Floor and ceiling
	Facts about floor and ceiling
	Algorithm Analysis
	Algorithm Analysis: A first example
	Analyzing the loop
	Lower-order terms don’t matter
	Big-O: Common Names
	Big-O running times
	Analyzing code
	Analyzing code
	Try a Java sorting program

