CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis

Linda Shapiro
Winter 2015

Today

- Registration should be done.
- Homework 1 due 11:59 pm next Wednesday, January 14
- Review math essential to algorithm analysis
- Proof by induction (review example)
- Exponents and logarithms
- Floor and ceiling functions
- Begin algorithm analysis

Mathematical induction

Suppose $P(n)$ is some statement (mentioning integer n)
Example: $n \geq n / 2+1$

We can use induction to prove $P(n)$ for all integers $n \geq n_{0}$.
We need to

1. Prove the "base case" i.e. $P\left(n_{0}\right)$. For us n_{0} is usually 1 .
2. Assume the statement holds for $P(k)$.
3. Prove the "inductive case" i.e. if $P(k)$ is true, then $P(k+1)$ is true.

Why we care:
To show an algorithm is correct or has a certain running time
no matter how big a data structure or input value is
(Our " n " will be the data structure or input size.)

Review Example

$P(n)=$ "the sum of the first n powers of $2\left(\right.$ starting at $\left.2^{\circ}\right)$ is $2^{n}-1^{\prime \prime}$

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{n-1}=2^{n}-1
$$

in other words: $1+2+4+\ldots+2^{n-1}=2^{n}-1$.

Review Example

$P(n)=$ "the sum of the first n powers of $2\left(\right.$ starting at $\left.2^{\circ}\right)$ is $2^{n}-1^{\prime \prime}$

We will show that $P(n)$ holds for all $n \geq 1$
Proof: By induction on n

- Base case: $n=1$. Sum of first 1 power of 2 is 2^{0}, which equals 1 . And for $n=1,2^{n}-1$ equals 1 .

Review Example

$P(n)=$ "the sum of the first n powers of 2 (starting at 2^{0}) is $2^{n}-1^{\prime \prime}$

- Inductive case:
- Assume $P(k)$ is true i.e. the sum of the first k powers of 2 is $2^{k}-1$
- Show $P(k+1)$ is true i.e. the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$

Using our assumption, we know the first k powers of 2 is

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{k-1}=2^{k}-1
$$

Add the next power of 2 to both sides...

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{k-1}+2^{k}=2^{k}-1+2^{k}
$$

We have what we want on the left; massage the right a bit:

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{k-1}+2^{k}=2\left(2^{k}\right)-1
$$

$$
=2^{k+1}-1
$$

Mathematical Preliminaries

- The following N slides contain basic mathematics needed for analyzing algorithms.
- You should actually know this stuff.
- Hang in there!

Logarithms and Exponents

- Definition: $x=2^{y}$ if $\log _{2} x=y$
$-8=2^{3}$, so $\log _{2} 8=3$
$-65536=2^{16}$, so $\log _{2} 65536=16$
- The exponent of a number says how many times to use the number in a multiplication. e.g. $2^{3}=2 \times 2 \times 2=8$
(2 is used 3 times in a multiplication to get 8)
- A logarithm says how many of one number to multiply to get another number. It asks "what exponent produced this?" e.g. $\log _{2} 8=3$ (2 makes 8 when used 3 times in a multiplication)

Logarithms and Exponents

- Definition: $x=2^{y}$ if $\log _{2} x=y$
$-8=2^{3}$, so $\log _{2} 8=3$
- 65536= 2^{16}, so $\log _{2} 65536=16$
- Since so much is binary in CS, $\mathbf{l o g}$ almost always means $\log _{2}$
- $\log _{2} \mathrm{n}$ tells you how many bits needed to represent n combinations.
- So, $\log _{2} \mathbf{1 , 0 0 0 , 0 0 0}=$ "a little under 20 "
- Logarithms and exponents are inverse functions. Just as exponents grow very quickly, logarithms grow very slowly.

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

See Excel file for plot data play with it!

Properties of logarithms

- $\log \left(A^{*} B\right)=\log A+\log B$
- $\log \left(N^{k}\right)=k \log N$
- $\log (A / B)=\log A-\log B$
- $\log (\log x)$ is written $\log \log x$
- Grows as slowly as $2^{2^{y}}$ grows quickly
- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log x$ for all $x>2$
- It is not the same as $\log \log x$

Log base doesn't matter much!

"Any base $B \log$ is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} \times=3.22 \log _{10} \times$
- In general we can convert log bases via a constant multiplier
- To convert from base B to base A:

$$
\log _{B} x=\left(\log _{A} x\right) /\left(\log _{A} B\right)
$$

- I use this because my calculator doesn't have $\log _{2}$.

Floor and ceiling

$$
\begin{aligned}
& \lfloor X\rfloor \quad \text { Floor function: the largest integer } \leq x \\
& \lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2
\end{aligned}
$$

$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$

$$
\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2
$$

Facts about floor and ceiling

$$
\begin{array}{ll}
\text { 1. } & X-1<\lfloor X\rfloor \leq X \\
\text { 2. } & X \leq\lceil X\rceil<X+1 \\
\text { 3. }\lfloor n / 2\rfloor+\lceil n / 2\rceil=n \quad \text { if } n \text { is an integer }
\end{array}
$$

Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.), we want to know

- How much longer does the algorithm take to run? (time)
- How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm correctness - does it produce the right answer for all inputs

- Usually more important, naturally

Algorithm Analysis: A first example

- Consider the following program segment:

$$
\begin{aligned}
& x:=0 ; \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } i \text { do } \\
& \quad x:=x+1 ;
\end{aligned}
$$

- What is the value of x at the end?

\mathbf{i}	\mathbf{j}	\mathbf{X}
1	1 to 1	1
2	1 to 2	3
3	1 to 3	6
4	1 to 4	10
\cdots		
n	1 to n	$?$

Number of times x gets incremented is

$$
\begin{aligned}
& =1+2+3+\ldots+(n-1)+n \\
& =n *(n+1) / 2
\end{aligned}
$$

Analyzing the loop

- Consider the following program segment:

$$
\begin{aligned}
& x:=0 ; \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=1 \text { to } i \text { do } \\
& \quad x:=x+1 ;
\end{aligned}
$$

- The total number of loop iterations is $n *(n+1) / 2$
- This is a very common loop structure, worth memorizing
- This is proportional to n^{2}, and we say $O\left(\mathrm{n}^{2}\right)$, "big-Oh of"
- $n^{*}(n+1) / 2=\left(n^{2}+n\right) / 2=1 / 2 n^{2}+1 / 2 n$
- For large enough n , the lower order and constant terms are irrelevant, as are the assignment statements
- See plot... $\left(n^{2}+n\right) / 2$ vs. just $n^{2} / 2$

Lower-order terms don't matter

 $n *(n+1) / 2$ vs. just $n^{2} / 2$

We just say $O\left(n^{2}\right)$

Big-O: Common Names

O(1)
$O(\log n)$
$O(n)$
O(n $\log n)$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$O\left(n^{k}\right)$
$O\left(k^{n}\right)$
$\mathrm{O}(\mathrm{n}!) \quad$ factorial
Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

Big-O running times

- For a processor capable of one million instructions per second

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Analyzing code

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.
(This is an approximation of reality: a very useful "lie".)

Consecutive statements
Conditionals
Loops
Calls
Recursion

Sum of times
Time of test plus slower branch
Sum of iterations
Time of call's body
Solve recurrence equation (next lecture)

Analyzing code

1. Add up time for all parts of the algorithm
e.g. number of iterations $=\left(n^{2}+n\right) / 2$
2. Eliminate low-order terms i.e. eliminate $n:\left(n^{2}\right) / 2$
3. Eliminate coefficients i.e. eliminate $1 / 2:\left(n^{2}\right)$: Result is $O\left(n^{2}\right)$

Examples:

$$
\begin{array}{ll}
-\quad 4 n+5 & =O(n) \\
-0.5 n \log n+2 n+7 & =O(n \log n) \\
-n^{3}+2^{n}+3 n & =O\left(2^{n}\right) \\
-365 & =O(1)
\end{array}
$$

Try a Java sorting program

private static void bubbleSort(int[] intArray) \{ int $\mathrm{n}=$ intArray.length; int temp $=0$;
for(int i=0; i < n; i++)\{
for(int j=1; j < (n-i); j++)\{
if(intArray[j-1] > intArray[j])\{
//swap the elements!
temp = intArray[j-1];
intArray[j-1] = intArray[j];
intArray[j] = temp;
\}\}\}\}

