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Today 

• Registration should be done.  
• Homework 1 due 11:59 pm next Wednesday, January 14 
• Review math essential to algorithm analysis 

– Proof by induction (review example) 
– Exponents and logarithms 
– Floor and ceiling functions 
 

• Begin algorithm analysis 

CSE 373: Data Structures & Algorithms 2 Winter 2015 



Mathematical induction 
Suppose P(n) is some statement (mentioning integer n) 

Example: n ≥ n/2 + 1 
 

We can use induction to prove P(n) for all integers n ≥ n0.  
We need to 
1. Prove the “base case”  i.e. P(n0). For us n0 is usually 1.  
2. Assume the statement holds for P(k).  
3. Prove the “inductive case” i.e. if P(k) is true, then P(k+1) is true. 

 
Why we care:  
 To show an algorithm is correct or has a certain running time      
 no matter how big a data structure or input value is 
 (Our “n” will be the data structure or input size.) 
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Review Example 
P(n) = “the sum of the first n powers of 2 (starting at 20) is 2n-1” 

  20 + 21 + 22 + … + 2n-1 = 2n - 1. 
 
in other words:  1 + 2 + 4 + … + 2n-1 = 2n - 1. 
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Review Example 
P(n) = “the sum of the first n powers of 2 (starting at 20) is 2n-1” 
 
We will show that P(n) holds for all n ≥ 1 
Proof:  By induction on n 
• Base case: n=1.  Sum of first 1 power of 2 is 20 , which equals 1. 
          And for n=1, 2n-1 equals 1. 
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Review Example 
P(n) = “the sum of the first n powers of 2 (starting at 20) is 2n-1” 
 
• Inductive case: 

– Assume P(k) is true i.e. the sum of the first k powers of 2 is 2k-1 
– Show P(k+1) is true i.e. the sum of the first (k+1) powers of 2 is 2k+1-1 
 
Using our assumption, we know the first k powers of 2 is 
 20 + 21 + 22 + … + 2k-1 = 2k - 1 
 
Add the next power of 2 to both sides… 
 20 + 21 + 22 + … + 2k-1 + 2k = 2k - 1 + 2k 
 
We have what we want on the left; massage the right a bit: 
  20 + 21 + 22 + … + 2k-1 + 2k = 2(2k) – 1 
          = 2k+1 – 1 
 

Success! 
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Mathematical Preliminaries 

• The following N slides contain basic 
mathematics needed for analyzing 
algorithms. 

• You should actually know this stuff. 
 

• Hang in there! 
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Logarithms and Exponents 
• Definition: x = 2y if log2 x = y   

– 8 = 23,  so  log2 8 = 3 
– 65536= 216,  so  log2 65536 = 16 

 
• The exponent of a number says how many times to use the 

number in a multiplication. e.g. 23 = 2 × 2 × 2 = 8  
     (2 is used 3 times in a multiplication to get 8) 
 
• A logarithm says how many of one number to multiply to get 

another number. It asks "what exponent produced this?”  
     e.g. log28 = 3 (2 makes 8 when used 3 times in a multiplication) 
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Logarithms and Exponents 
• Definition: x = 2y if log2 x = y   

– 8 = 23,  so  log2 8 = 3 
– 65536= 216,  so  log2 65536 = 16 

  
• Since so much is binary in CS, log almost always means log2 
• log2 n tells you how many bits needed to represent n combinations.    
• So, log2 1,000,000 = “a little under 20”  
 
• Logarithms and exponents are inverse functions. Just as exponents 

grow very quickly, logarithms grow very slowly. 
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Logarithms and Exponents 

n 
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Logarithms and Exponents 

n 
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Logarithms and Exponents 

n 
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Logarithms and Exponents 
See Excel file 
for plot data – 
play with it! 

n 
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Properties of logarithms 

• log(A*B) = log A + log B 
 

• log(Nk)= k log N 
 

• log(A/B) = log A – log B 
 

• log(log x) is written log log x 
– Grows as slowly as 22  grows quickly 

 
• (log x)(log x) is written log2x 

– It is greater than log x for all x > 2 
– It is not the same as log log x 

y 
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Log base doesn’t matter much! 

“Any base B log is equivalent to base 2 log within a constant factor” 
– And we are about to stop worrying about constant factors! 
– In particular, log2 x = 3.22 log10 x 
– In general we can convert log bases via a constant multiplier  
– To convert from base B to base A: 

   logB x = (logA x) / (logA B) 

 
                     

• I use this because my calculator doesn’t have 
log2. 
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Floor and ceiling 

 X

 X

Floor function: the largest integer < X 

Ceiling function: the smallest integer > X 

      2232.722.7 =−=−=

      2222.332.3 =−=−=
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Facts about floor and ceiling 

 
 

    integer an is n ifnn/2n/23.
1XXX2.

XX1X1.

=+
+<≤
≤<−
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Algorithm Analysis 

As the “size” of an algorithm’s input grows (integer, length of array, 
size of queue, etc.), we want to know 
– How much longer does the algorithm take to run? (time) 
– How much more memory does the algorithm need? (space) 

 
Because the curves we saw are so different, often care about only 

“which curve we are like” 
 

Separate issue: Algorithm correctness – does it produce the right 
answer for all inputs 
– Usually more important, naturally 
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Algorithm Analysis: A first example 
• Consider the following program segment:  
 x:= 0; 

 for i = 1 to n do 

    for j = 1 to i do 

  x := x + 1; 

• What is the value of x at the end? 
 

 
1 1 to 1      1 
2 1 to 2      3 
3 1 to 3      6 
4 1 to 4      10 
… 
n    1 to n        ? 

= 1 + 2 + 3 + … + (n-1) + n 

i       j      x 

Number of times x gets incremented is 

= n*(n+1)/2 
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Analyzing the loop 
• Consider the following program segment:  
 x:= 0; 

 for i = 1 to n do 

    for j = 1 to i do 

  x := x + 1; 

 
• The total number of loop iterations is n*(n+1)/2 

– This is a very common loop structure, worth memorizing 
– This is proportional to n2 , and we say O(n2), “big-Oh of” 

• n*(n+1)/2 = (n2+ n)/2 = 1/2n2 + 1/2n  

• For large enough n, the lower order and constant terms 
are irrelevant, as are the assignment statements 

• See plot… (n2+ n)/2 vs. just n2/2 
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Lower-order terms don’t matter 

n*(n+ 1)/2   vs. just n2/2 

We just say O(n2) 

CSE 373: Data Structures & Algorithms 21 Winter 2015 



Big-O: Common Names 

O(1)  constant (same as O(k) for constant k) 
O(log n) logarithmic 
O(n)  linear 
O(n log n)         “n log n” 
O(n2)  quadratic 
O(n3)  cubic 
O(nk)  polynomial (where is k is any constant) 
O(kn)  exponential (where k is any constant > 1) 
O(n!)  factorial 
 

Note: “exponential” does not mean “grows really fast”, it means 
“grows at rate proportional to kn for some k>1” 
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Big-O running times 

• For a processor capable of one million instructions per second 
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Analyzing code 

Basic operations  take “some amount of” constant time 
– Arithmetic (fixed-width) 
– Assignment 
– Access one Java field or array index 
– Etc. 

(This is an approximation of reality: a very useful “lie”.) 
 
Consecutive statements  Sum of times 
Conditionals   Time of test plus slower branch 
Loops    Sum of iterations 
Calls    Time of call’s body 
Recursion   Solve recurrence equation        

     (next lecture) 
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Analyzing code 

1. Add up time for all parts of the algorithm 
 e.g. number of iterations = (n2+ n)/2 
2. Eliminate low-order terms i.e. eliminate n: (n2)/2 
3. Eliminate coefficients i.e. eliminate 1/2: (n2) : Result is O(n2)  
 
Examples: 

– 4n + 5  
– 0.5n log n + 2n + 7 
– n3 + 2n + 3n 
– 365  

 
 

= O(n) 
= O(n log n) 
= O(2n) 
= O(1) 
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Try a Java sorting program 
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private static void bubbleSort(int[] intArray) { 
int n = intArray.length; 
                int temp = 0; 
                
                for(int i=0; i < n; i++){ 
                        for(int j=1; j < (n-i); j++){ 
                                
                                if(intArray[j-1] > intArray[j]){ 
                                        //swap the elements! 
                                        temp = intArray[j-1]; 
                                        intArray[j-1] = intArray[j]; 
                                        intArray[j] = temp; 
                                }}}} 
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