
CSE373: Data Structures and Algorithms

Lecture 4: Asymptotic Analysis

Linda Shapiro
Winter 2015

Efficiency

• What does it mean for an algorithm to be efficient?
– We primarily care about time (and sometimes space)

• Is the following a good definition?
– “An algorithm is efficient if, when implemented, it runs

quickly on real input instances”
– What does “quickly” mean?
– What constitutes “real input?”
– How does the algorithm scale as input size changes?

Winter 2015 2 CSE373: Data Structure & Algorithms

Gauging efficiency (performance)

• Uh, why not just run the program and time it?
– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.
• OS, Java version, libraries, drivers
• Other programs running
• Implementation dependent

– Choice of input
• Testing (inexhaustive) may miss worst-case input
• Timing does not explain relative timing among inputs

(what happens when n doubles in size)
• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

Winter 2015 3 CSE373: Data Structure & Algorithms

Comparing algorithms

When is one algorithm (not implementation) better than another?
– Various possible answers (clarity, security, …)
– But a big one is performance: for sufficiently large inputs, runs in

less time (our focus) or less space

We will focus on large inputs because probably any algorithm is “plenty
good” for small inputs (if n is 10, probably anything is fast)
– Time difference really shows up as n grows

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
timing it on some test cases”

 - Can do analysis before coding!

Winter 2015 4 CSE373: Data Structure & Algorithms

We usually care about worst-case running times

• Has proven reasonable in practice
– Provides some guarantees

• Difficult to find a satisfactory alternative
– What about average case?
– Difficult to express full range of input
– Could we use randomly-generated input?
– May learn more about generator than algorithm

Winter 2015 5 CSE373: Data Structure & Algorithms

Example

Find an integer in a sorted array

Winter 2015 6 CSE373: Data Structure & Algorithms

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 ???
}

Linear search

Find an integer in a sorted array

Winter 2015 7 CSE373: Data Structure & Algorithms

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
}

Best case?
k is in arr[0]
c1 steps
= O(1)

Worst case?
k is not in arr
c2*(arr.length)
= O(arr.length)

Binary search

Find an integer in a sorted array
– Can also be done non-recursively but “doesn’t matter” here

Winter 2015 8 CSE373: Data Structure & Algorithms

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Binary search

Winter 2015 9 CSE373: Data Structure & Algorithms

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case: c1 steps = O(1)
Worst case: T(n) = c2 steps + T(n/2) where n is hi-lo

• O(log n) where n is array.length
• Solve recurrence equation to know that…

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
– T(n) = c2 + T(n/2) T(1) = c1 first eqn.

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = c2 + c2 + T(n/4) 2nd eqn.
 = c2 + c2 + c2 + T(n/8) 3rd eqn.
 = …
 = c2(k) + T(n/(2k)) kth eqn.

3. Find a closed-form expression by setting the number of expansions
to a value (e.g. 1) which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n
– So T(n) = c2 log2 n + T(1)
– So T(n) = c2 log2 n + c1 (get to base case and do it)
– So T(n) is O(log n)

Winter 2015 10 CSE373: Data Structure & Algorithms

Ignoring constant factors

• So binary search is O(log n) and linear search is O(n)
– But which is faster?

• Could depend on constant factors

– How many assignments, additions, etc. for each n
• E.g. T(n) = 5,000,000n vs. T(n) = 5n2

– And could depend on overhead unrelated to n
• E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

• But there exists some n0 such that for all n > n0 binary search wins

• Let’s play with a couple plots to get some intuition…

Winter 2015 11 CSE373: Data Structure & Algorithms

Example
• Let’s try to “help” linear search

– Run it on a computer 100x as fast (say 2015 model vs. 1994)
– Use a new compiler/language that is 3x as fast
– Be a clever programmer to eliminate half the work
– So doing each iteration is 600x as fast as in binary search

Winter 2015 12 CSE373: Data Structure & Algorithms

not enough iterations to show it enough iterations to show it

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:
– (3n2+17) is O(n2)
– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

Winter 2015 13 CSE373: Data Structure & Algorithms

Big-O, formally
Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

• To show g(n) is in O(f(n)), pick a c large enough to “cover the constant
factors” and n0 large enough to “cover the lower-order terms”
– Example: Let g(n) = 3n2+17 and f(n) = n2

 c=5 and n0 =10 is more than good enough
 (3*102)+17 ≤ 5*102 so 3n2+17 is O(n2)

• This is “less than or equal to”
– So 3n2+17 is also O(n5) and O(2n) etc.

• But usually we’re interested in the tightest upper bound.
Winter 2015 14 CSE373: Data Structure & Algorithms

Example 1, using formal definition

• Let g(n) = 1000n and f(n) = n

– To prove g(n) is in O(f(n)), find a valid c and n0
– We can just let c = 1000.
– That works for any n0, such as n0 = 1.
– g(n) = 1000n ≤ c f(n) = 1000n for all n ≥ 1.

Winter 2015 15 CSE373: Data Structure & Algorithms

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

Example 1’, using formal definition

• Let g(n) = 1000n and f(n) = n2

– To prove g(n) is in O(f(n)), find a valid c and n0
– The “cross-over point” is n=1000

• g(n) = 1000*1000 and f(n) = 10002
– So we can choose n0=1000 and c=1
– Then g(n) = 1000n ≤ c f(n) = 1n2 for all n ≥ 1000

Winter 2015 16 CSE373: Data Structure & Algorithms

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

Examples 1 and 1’

• Which is it?
• Is g(n) = 1000n called f(n) or f(n2)?

• By definition, it can be either one.
• We prefer to use the smallest one.
Winter 2015 17 CSE373: Data Structure & Algorithms

Example 2, using formal definition

• Let g(n) = n4 and f(n) = 2n

– To prove g(n) is in O(f(n)), find a valid c and n0
– We can choose n0=20 and c=1

• g(n) = 204 vs. f(n) = 1*220

– g(n) = n4 ≤ c f(n) = 1*2n for all n ≥ 20

– If I were doing a complexity analysis, would I pick O(2n)?

Winter 2015 18 CSE373: Data Structure & Algorithms

Definition: g(n) is in O(f(n)) if there exist
 positive constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

Comparison

• n n4 2n

• 10 10,000 1,024
• 20 160,000 1,048,576
• 30 810,000 1,073,741,824
• 40 2,560,000 1.0995x1012

Winter 2015 19 CSE373: Data Structure & Algorithms

What’s with the c

• The constant multiplier c is what allows functions that differ only in
their largest coefficient to have the same asymptotic complexity

• Consider:
 g(n) = 7n+5
 f(n) = n

– These have the same asymptotic behavior (linear)
• So g(n) is in O(f(n)) even through g(n) is always larger
• The c allows us to provide a coefficient so that g(n) ≤ c f(n)

– In this example:
• To prove g(n) is in O(f(n)), have c = 12, n0 = 1

 (7*1)+5 ≤ 12*1

Winter 2015 20 CSE373: Data Structure & Algorithms

What you can drop

• Eliminate coefficients because we don’t have units anyway
– 3n2 versus 5n2 doesn’t mean anything when we have not

specified the cost of constant-time operations
– Both are O(n2)

• Eliminate low-order terms because they have vanishingly small
impact as n grows
– 5n5 + 40n4 + 30n3 + 20n2 + 10n + 1 is ?
– O(n5)

• Do NOT ignore constants that are not multipliers

– n3 is not O(n2)
– 3n is not O(2n)

Winter 2015 21 CSE373: Data Structure & Algorithms

Upper and Lower Bounds

Winter 2015 22 CSE373: Data Structure & Algorithms

g(x)

f1(x)

f2(x)

x

g(x)

f1(x) is an upper bound for g(x); f2(x) is a lower bound.
g(x) ≤ f1(x) and g(x) ≥ f2(x).

More Asymptotic* Notation

• Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)
– g(n) is in O(f(n)) if there exist constants c and n0 such that

 g(n) ≤ c f(n) for all n ≥ n0

• Lower bound: Ω(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
– g(n) is in Ω(f(n)) if there exist constants c and n0 such that

 g(n) ≥ c f(n) for all n ≥ n0

• Tight bound: θ(f(n)) is the set of all functions asymptotically
equal to f(n)
– g(n) is in θ(f(n)) if both g(n) is in O(f(n)) and
 g(n) is in Ω(f(n))

Winter 2015 23 CSE373: Data Structure & Algorithms

*approaching
arbitrarily closely

Correct terms, in theory

A common error is to say O(f(n)) when you mean θ(f(n))
– Since a linear algorithm is also O(n5), it’s tempting to say “this

algorithm is exactly O(n)”
– That doesn’t mean anything, say it is θ(n)
– That means that it is not, for example O(log n)

Less common notation:

– “little-oh”: intersection of “big-Oh” and not “big-Theta”
• For all c, there exists an n0 such that… ≤
• Example: array sum is O(n) and o(n2) but not o(n)

– “little-omega”: intersection of “big-Omega” and not “big-Theta”
• For all c, there exists an n0 such that… ≥
• Example: array sum is O(n) and ω(log n) but not ω(n)

Winter 2015 24 CSE373: Data Structure & Algorithms

What we are analyzing: Complexity

• The most common thing to do is give an O upper bound to the
worst-case running time of an algorithm

• Example: binary-search algorithm

– Common: O(log n) running-time in the worst-case
– Less common: θ(1) in the best-case (item is in the middle)
– Less common (but very good to know): the find-in-sorted-

array problem is Ω(log n) in the worst-case (lower bound)
• No algorithm can do better
• A problem cannot be O(f(n)) since you can always make

a slower algorithm

Winter 2015 25 CSE373: Data Structure & Algorithms

Other things to analyze

• Space instead of time
– Remember we can often use space to gain time

• Average case
– Sometimes only if you assume something about the

probability distribution of inputs
– Sometimes uses randomization in the algorithm

• Will see an example with sorting
– Sometimes an amortized guarantee

• Average time over any sequence of operations

Winter 2015 26 CSE373: Data Structure & Algorithms

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

Winter 2015 27 CSE373: Data Structure & Algorithms

Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical
foundation
– Examine the algorithm itself, not the implementation
– Reason about (even prove) performance as a function of n

• Timing also has its place

– Compare implementations
– Focus on data sets you care about (versus worst case)
– Determine what the constant factors “really are”

Winter 2015 28 CSE373: Data Structure & Algorithms

	CSE373: Data Structures and Algorithms��Lecture 4: Asymptotic Analysis
	Efficiency
	Gauging efficiency (performance)
	Comparing algorithms
	We usually care about worst-case running times
	Example
	Linear search
	Binary search
	Binary search
	Solving Recurrence Relations
	Ignoring constant factors
	Example
	Big-Oh relates functions
	Big-O, formally
	Example 1, using formal definition
	Example 1’, using formal definition
	Examples 1 and 1’
	Example 2, using formal definition
	Comparison
	What’s with the c
	What you can drop
	Upper and Lower Bounds
	More Asymptotic* Notation
	Correct terms, in theory
	What we are analyzing: Complexity
	Other things to analyze
	Summary
	Addendum: Timing vs. Big-Oh Summary

