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Efficiency 

• What does it mean for an algorithm to be efficient? 
– We primarily care about time (and sometimes space) 

• Is the following a good definition? 
– “An algorithm is efficient if, when implemented, it runs 

quickly on real input instances” 
– What does “quickly” mean? 
– What constitutes “real input?” 
– How does the algorithm scale as input size changes? 
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Gauging efficiency (performance) 

• Uh, why not just run the program and time it? 
– Too much variability, not reliable or portable: 

• Hardware: processor(s), memory, etc. 
• OS, Java version, libraries, drivers 
• Other programs running 
• Implementation dependent 

– Choice of input 
• Testing (inexhaustive) may miss worst-case input 
• Timing does not explain relative timing among inputs 

(what happens when n doubles in size) 
• Often want to evaluate an algorithm, not an implementation 

– Even before creating the implementation (“coding it up”) 
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Comparing algorithms 

When is one algorithm (not implementation) better than another? 
– Various possible answers (clarity, security, …) 
– But a big one is performance: for sufficiently large inputs, runs in 

less time (our focus) or less space 
 

We will focus on large inputs because probably any algorithm is “plenty 
good” for small inputs (if n is 10, probably anything is fast) 
– Time difference really shows up as n grows 

 

Answer will be independent of CPU speed, programming language, 
coding tricks, etc. 

 

Answer is general and rigorous, complementary to “coding it up and 
timing it on some test cases” 

 - Can do analysis before coding! 
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We usually care about worst-case running times 

• Has proven reasonable in practice 
– Provides some guarantees 

• Difficult to find a satisfactory alternative 
– What about average case? 
– Difficult to express full range of input 
– Could we use randomly-generated input? 
– May learn more about generator than algorithm 
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Example 

Find an integer in a sorted array 
      
 

Winter 2015 6 CSE373: Data Structure & Algorithms 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   ??? 
} 



Linear search 

Find an integer in a sorted array 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   for(int i=0; i < arr.length; ++i) 
      if(arr[i] == k) 
        return true; 
   return false; 
} 

Best case? 
k is in arr[0]  
c1 steps 
= O(1) 
 
Worst case? 
k is not in arr 
c2*(arr.length) 
= O(arr.length) 
      
 



Binary search 

Find an integer in a sorted array 
– Can also be done non-recursively but “doesn’t matter” here 
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2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    



Binary search 
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// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: c1 steps = O(1) 
Worst case: T(n) = c2 steps + T(n/2) where n is hi-lo 

• O(log n) where n is array.length 
• Solve recurrence equation to know that… 



Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 
– T(n) = c2 + T(n/2) T(1) = c1  first eqn. 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

– T(n)  = c2 + c2 + T(n/4)    2nd eqn. 
          = c2 + c2 + c2 + T(n/8)   3rd eqn. 
                 = … 
                 = c2(k) + T(n/(2k))    kth eqn. 

3. Find a closed-form expression by setting the number of expansions 
to a value (e.g. 1) which reduces the problem to a base case 

– n/(2k) = 1 means n = 2k  means k = log2 n 
– So T(n) = c2 log2 n + T(1)  
– So T(n) = c2 log2 n + c1  (get to base case and do it) 
– So T(n) is O(log n) 
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Ignoring constant factors 

• So binary search is O(log n) and linear search is O(n)  
– But which is faster? 

 
• Could depend on constant factors 

– How many assignments, additions, etc. for each n 
• E.g. T(n) = 5,000,000n  vs. T(n) = 5n2  

– And could depend on overhead unrelated to n 
• E.g. T(n) = 5,000,000 + log n  vs. T(n) = 10 + n 
 

• But there exists some n0 such that for all n > n0 binary search wins 
 

• Let’s play with a couple plots to get some intuition… 
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Example 
• Let’s try to “help” linear search 

– Run it on a computer 100x as fast (say 2015 model vs. 1994) 
– Use a new compiler/language that is 3x as fast 
– Be a clever programmer to eliminate half the work 
– So doing each iteration is 600x as fast as in binary search 
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not enough iterations to show it               enough iterations to show it 



Big-Oh relates functions 

We use O on a function f(n) (for example n2) to mean the set of 
functions with asymptotic behavior less than or equal to f(n) 

 
So (3n2+17)  is in O(n2)  

– 3n2+17 and n2  have the same asymptotic behavior 
 

Confusingly, we also say/write: 
– (3n2+17)  is O(n2)  
– (3n2+17)  =  O(n2)  

 
But we would never say O(n2) =  (3n2+17) 
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Big-O, formally 
Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  
 
  g(n) ≤  c f(n)  for all n ≥ n0 

 
 

• To show g(n) is in O( f(n) ), pick a c large enough to “cover the constant 
factors” and n0 large enough to “cover the lower-order terms” 
– Example: Let g(n) = 3n2+17 and f(n) = n2 

  c=5 and n0 =10 is more than good enough 
  (3*102)+17 ≤  5*102 so  3n2+17 is O(n2) 

• This is “less than or equal to” 
– So 3n2+17 is also O(n5) and O(2n)  etc. 

• But usually we’re interested in the tightest upper bound. 
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Example 1, using formal definition 

• Let g(n) = 1000n and f(n) = n 

– To prove g(n) is in O(f(n)), find a valid c and n0  
– We can just let c = 1000. 
– That works for any n0, such as n0 = 1. 
– g(n) = 1000n ≤  c f(n) = 1000n for all n ≥ 1. 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  
 
  g(n) ≤  c f(n)  for all n ≥ n0 



Example 1’, using formal definition 

• Let g(n) = 1000n and f(n) = n2 

– To prove g(n) is in O(f(n)), find a valid c and n0  
– The “cross-over point” is n=1000 

•  g(n) = 1000*1000 and f(n) = 10002  
– So we can choose n0=1000 and c=1 
– Then g(n) = 1000n ≤  c f(n) = 1n2  for all n ≥ 1000 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  
 
  g(n) ≤  c f(n)  for all n ≥ n0 



Examples 1 and 1’ 

• Which is it? 
• Is g(n) = 1000n called f(n) or f(n2)? 

 
 
 
 

• By definition, it can be either one. 
• We prefer to use the smallest one. 
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Example 2, using formal definition 

• Let g(n) = n4 and f(n) = 2n 

– To prove g(n) is in O(f(n)), find a valid c and n0  
– We can choose n0=20 and c=1 

•  g(n) = 204 vs. f(n) = 1*220 

–  g(n) = n4  ≤  c f(n) = 1*2n for all n ≥ 20 

 
– If I were doing a complexity analysis, would I pick O(2n)? 
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Definition:  g(n) is in O( f(n) ) if there exist  
  positive constants c and n0 such that  
 
  g(n) ≤  c f(n)  for all n ≥ n0 



Comparison 

•  n            n4   2n 

• 10    10,000                1,024 
• 20  160,000  1,048,576 
• 30  810,000       1,073,741,824 
• 40           2,560,000   1.0995x1012 
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What’s with the c 

• The constant multiplier c is what allows functions that differ only in 
their largest coefficient to have the same asymptotic complexity 

• Consider:  
 g(n) = 7n+5  
 f(n) = n 

– These have the same asymptotic behavior (linear) 
• So g(n) is in O(f(n)) even through g(n) is always larger 
• The c allows us to provide a coefficient so that g(n) ≤  c f(n) 
 

– In this example:  
• To prove g(n) is in O(f(n)), have c = 12, n0 = 1 

 (7*1)+5 ≤ 12*1 
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What you can drop 

• Eliminate coefficients because we don’t have units anyway 
– 3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations 
– Both are O(n2)  
 

• Eliminate low-order terms because they have vanishingly small 
impact as n grows 
– 5n5 + 40n4 + 30n3 + 20n2 + 10n + 1 is ? 
– O(n5) 

 
• Do NOT ignore constants that are not multipliers 

– n3 is not O(n2) 
– 3n is not O(2n) 
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Upper and Lower Bounds 
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g(x) 

f1(x) 

f2(x) 

x 

g(x) 

f1(x) is an upper bound for g(x); f2(x) is a lower bound. 
g(x) ≤ f1(x) and g(x) ≥ f2(x). 



More Asymptotic* Notation 

• Upper bound: O( f(n) ) is the set of all functions asymptotically 
less than or equal to f(n) 
– g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≤  c f(n) for all n ≥ n0 
 

• Lower bound: Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n) 
– g(n) is in Ω( f(n) ) if there exist  constants c and n0 such that  

  g(n) ≥  c f(n) for all n ≥ n0 
 

• Tight bound: θ( f(n) ) is the set of all functions asymptotically 
equal to f(n) 
– g(n) is in θ( f(n) ) if  both  g(n) is in O( f(n) ) and 
    g(n) is in Ω( f(n) )  
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*approaching 
arbitrarily closely 



Correct terms, in theory 

A common error is to say O( f(n) ) when you mean θ( f(n) ) 
– Since a linear algorithm is also O(n5), it’s tempting to say “this 

algorithm is exactly O(n)” 
– That doesn’t mean anything, say it is θ(n) 
– That means that it is not, for example O(log n) 

 
Less common notation: 

– “little-oh”: intersection of “big-Oh” and not “big-Theta” 
• For all c, there exists an n0 such that… ≤ 
• Example: array sum is O(n) and o(n2) but not o(n) 

– “little-omega”: intersection of “big-Omega” and not “big-Theta” 
• For all c, there exists an n0 such that… ≥ 
• Example: array sum is O(n) and ω(log n) but not ω(n) 
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What we are analyzing: Complexity 

• The most common thing to do is give an O upper bound to the 
worst-case running time of an algorithm 

 
• Example: binary-search algorithm  

– Common: O(log n) running-time in the worst-case 
– Less common: θ(1) in the best-case (item is in the middle) 
– Less common (but very good to know): the find-in-sorted-

array problem is Ω(log n) in the worst-case (lower bound) 
• No algorithm can do better 
• A problem cannot be O(f(n)) since you can always make 

a slower algorithm 
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Other things to analyze 

• Space instead of time 
– Remember we can often use space to gain time 

 
 

• Average case 
– Sometimes only if you assume something about the 

probability distribution of inputs 
– Sometimes uses randomization in the algorithm 

• Will see an example with sorting 
– Sometimes an amortized guarantee 

• Average time over any sequence of operations 
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Summary 

Analysis can be about: 

• The problem or the algorithm (usually algorithm) 

• Time or space (usually time) 

– Or power or dollars or … 

• Best-, worst-, or average-case (usually worst) 

• Upper-, lower-, or tight-bound  (usually upper or tight) 
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Addendum: Timing vs. Big-Oh Summary 

• Big-oh is an essential part of computer science’s mathematical 
foundation 
– Examine the algorithm itself, not the implementation 
– Reason about (even prove) performance as a function of n 

 
• Timing also has its place 

– Compare implementations 
– Focus on data sets you care about (versus worst case) 
– Determine what the constant factors “really are” 
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