

CSE373: Data Structures & Algorithms

Lecture 6: Binary Search Trees

Linda Shapiro Winter 2015

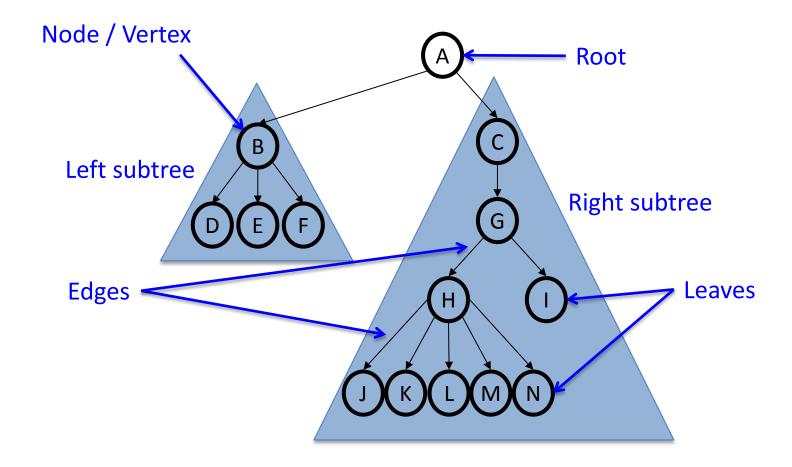
Announcements

HW2 due start of class Wednesday January 21

Previously

- Dictionary ADT
 - stores (key, value) pairs
 - find, insert, delete
- Trees
 - Terminology
 - Binary Trees

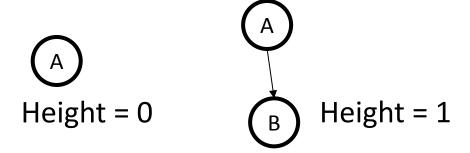
Reminder: Tree terminology



Example Tree Calculations

Recall: Height of a tree is the maximum number of edges from the root to a leaf.

What is the height of this tree?



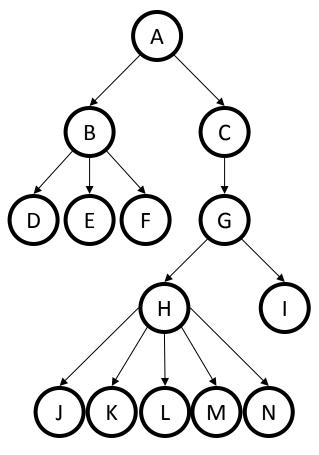
What is the depth of node G?

Depth = 2

What is the depth of node L?

Depth = 4

Height = 4



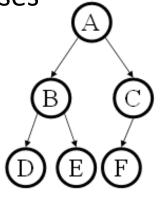
Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
 - A root (with data)
 - A left subtree (may be empty)
 - A right subtree (may be empty)

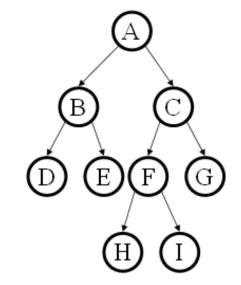
What is full?

Every node has 0 or 2 children.

Special Cases



Complete Tree



Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

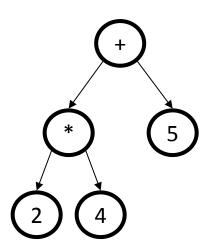
Pre-order: root, left subtree, right subtree

• *In-order*: left subtree, root, right subtree

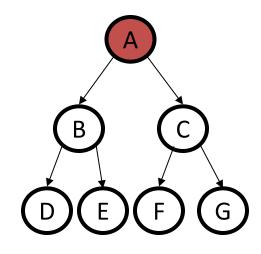
$$2 * 4 + 5$$

• *Post-order*: left subtree, right subtree, root

(an expression tree)

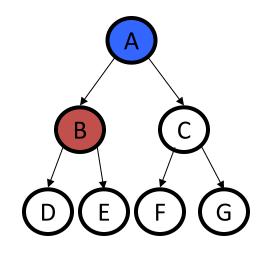


```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```



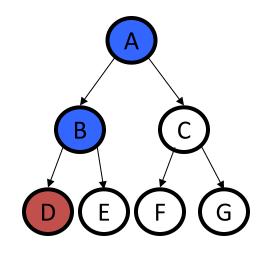
- = current node
- = processing (on the call stack)
- - = completed node ✓= element has been processed

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```



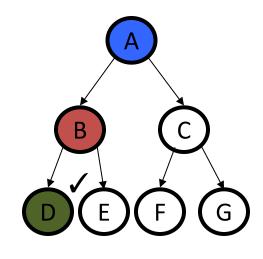
- = current node
- = processing (on the call stack)
- - = completed node ✓= element has been processed

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```



- = current node
- = processing (on the call stack)
- - = completed node ✓= element has been processed

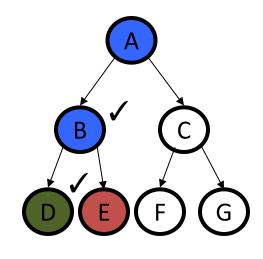
```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```



- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```

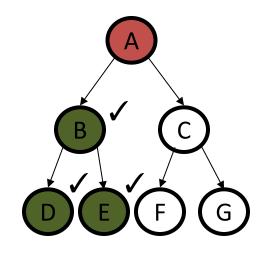


- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

D B

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```

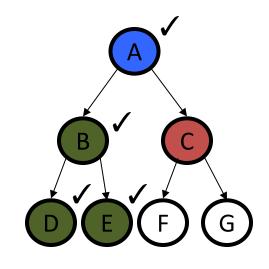


- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

DBE

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```

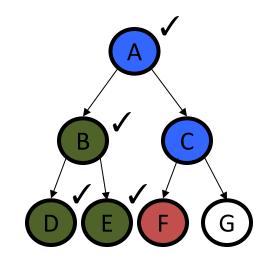


- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

DBEA

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```

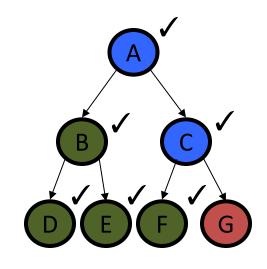


- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

DBEA

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```

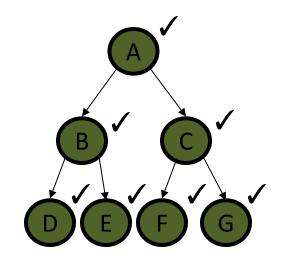


- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

DBEAFC

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
```

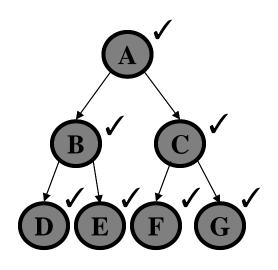


- = current node
- = processing (on the call stack)

= completed node ✓= element has been processed

DBEAFCG

```
void inOrderTraversal(Node t){
  if(t != null) {
    inOrderTraversal(t.left);
    process(t.element);
    inOrderTraversal(t.right);
  }
}
```



Sometimes order doesn't matter

Example: sum all elements

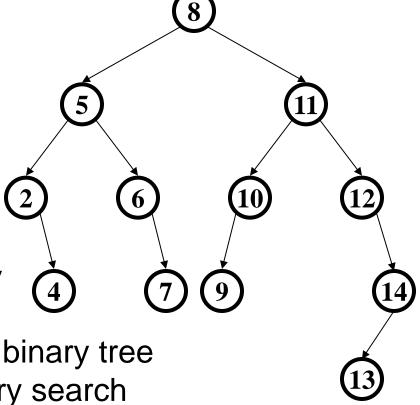
Sometimes order matters

Example: evaluate an expression tree

Binary Search Tree (BST) Data Structure

- Structure property (binary tree)
 - Each node has ≤ 2 children
 - Result: keeps operations simple
- Order property
 - All keys in left subtree smaller than node's key
 - All keys in right subtree larger than node's key
 - Result: easy to find any given key

A binary search tree is a type of binary tree (but not all binary trees are binary search trees!)

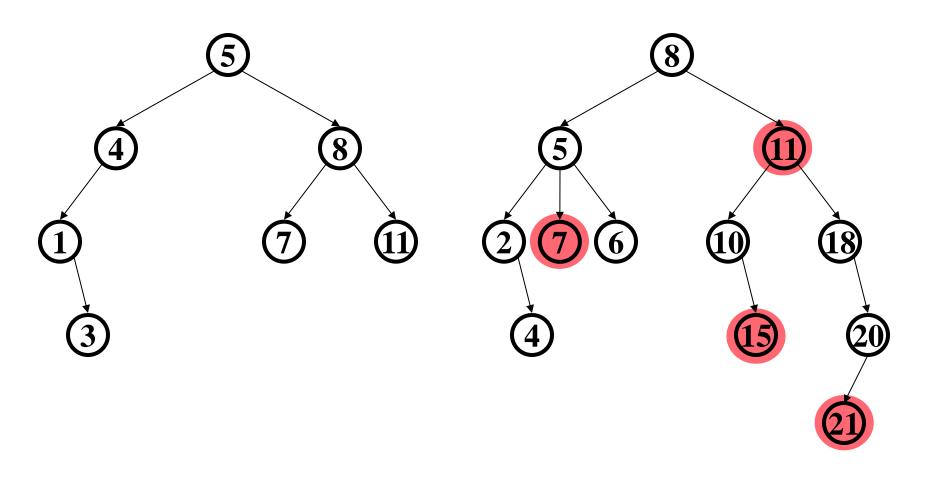


Winter 2015

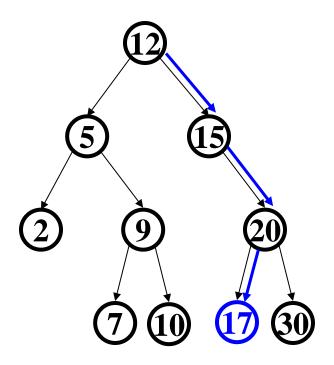
CSE373: Data Structures & Algorithms

Are these BSTs?

Activity! What nodes violate the BST properties?



Find in BST, Recursive



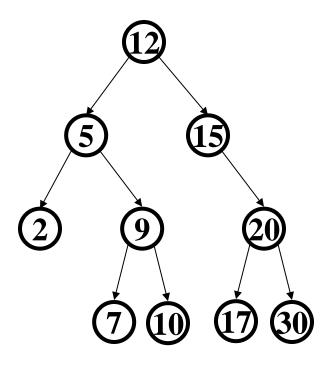
```
Data find(Key key, Node root){
  if(root == null)
    return null;
  if(key < root.key)
    return find(key,root.left);
  if(key > root.key)
    return find(key,root.right);
  return root.data;
}
```

What is the time complexity? Worst case.

Worst case running time is O(n).

- Happens if the tree is very lopsided (e.g. list)

Find in BST, Iterative



```
Data find(Key key, Node root) {
  while(root != null
         && root.key != key) {
    if(key < root.key)
        root = root.left;
    else(key > root.key)
        root = root.right;
  }
  if(root == null)
    return null;
  return root.data;
}
```

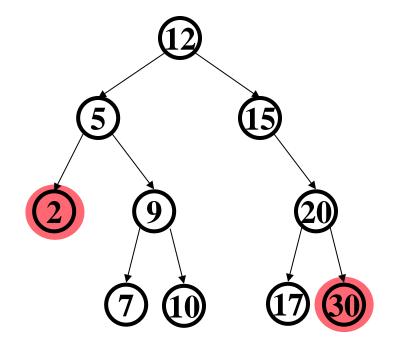
Worst case running time is O(n).

- Happens if the tree is very lopsided (e.g. list)

Bonus: Other BST "Finding" Operations

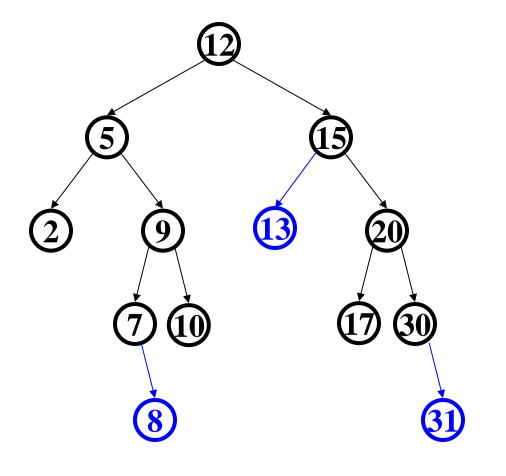
- FindMin: Find minimum node
 - Left-most node

- FindMax: Find maximum node
 - Right-most node



How would we implement?

Insert in BST

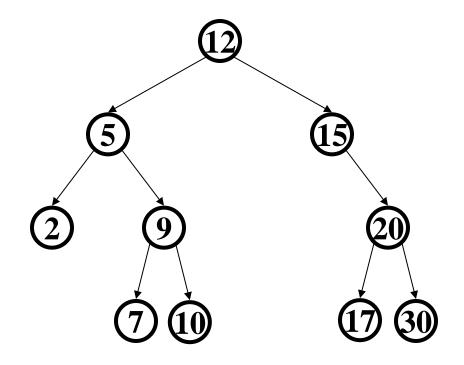


insert(13)
insert(8)
insert(31)

(New) insertions happen only at leaves – easy!

Again... worst case running time is O(n), which may happen if the tree is not balanced.

Deletion in BST



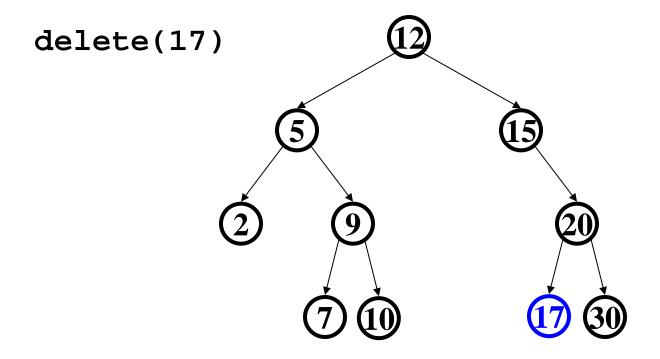
Why might deletion be harder than insertion?

Removing an item may disrupt the tree structure!

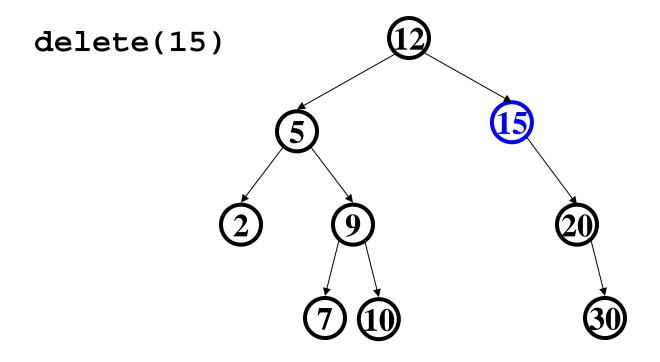
Deletion in BST

- Basic idea: find the node to be removed, then "fix" the tree so that it is still a binary search tree
- Three potential cases to fix:
 - Node has no children (leaf)
 - Node has one child
 - Node has two children

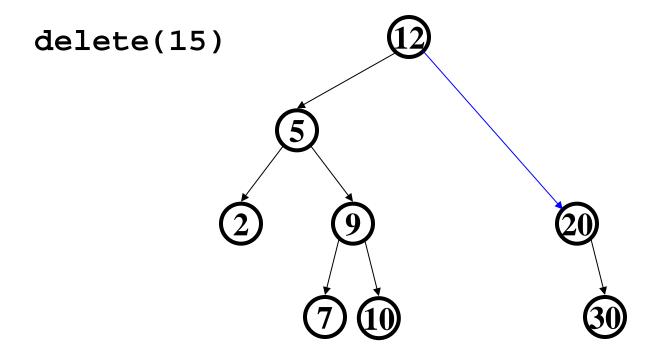
Deletion - The Leaf Case



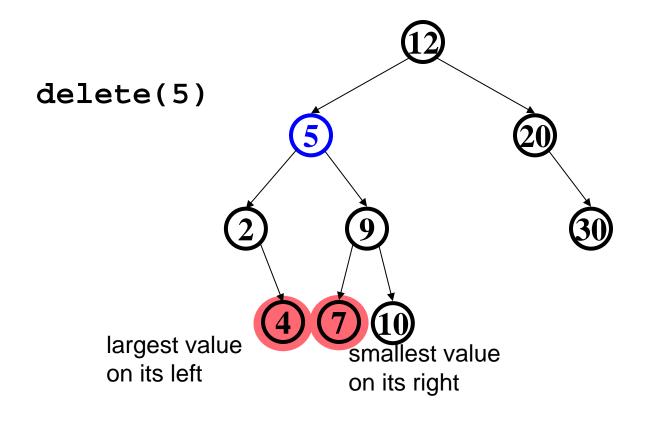
Deletion - The One Child Case



Deletion - The One Child Case



Deletion – The Two Child Case



What can we replace 5 with?

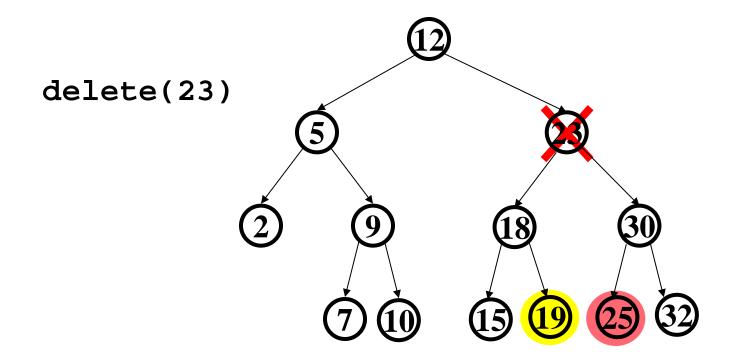
Deletion – The Two Child Case

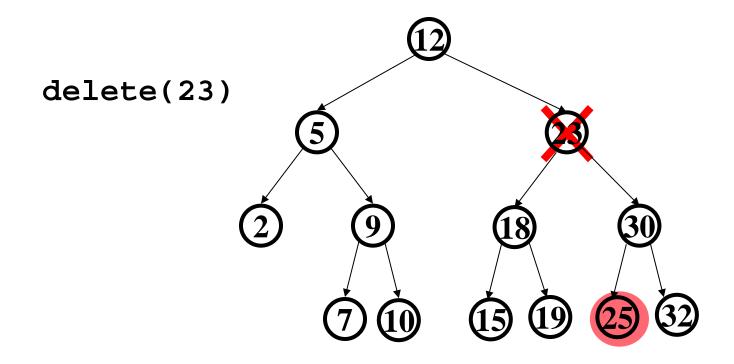
Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

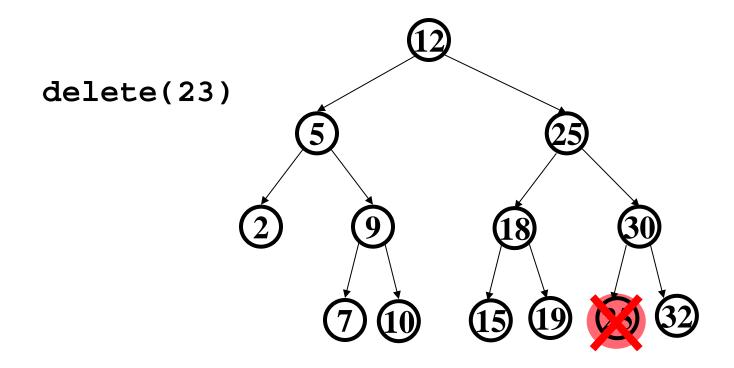
Options:

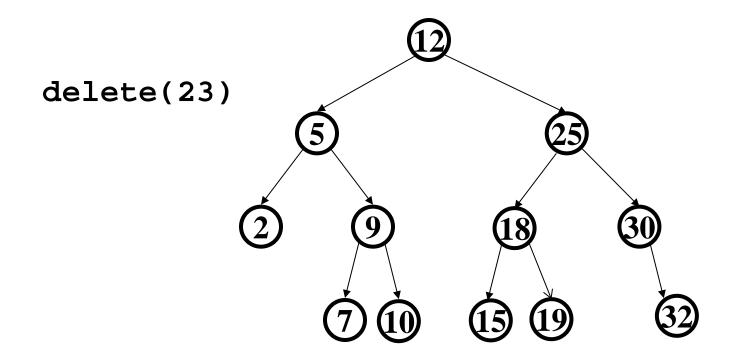
- successor minimum node from right subtree
 findMin(node.right)* the text does this
- predecessor maximum node from left subtree findMax(node.left)

Now delete the original node containing *successor* or *predecessor*









Success! ©

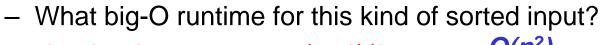
Lazy Deletion

- Lazy deletion can work well for a BST
 - Simpler
 - Can do "real deletions" later as a batch
 - Some inserts can just "undelete" a tree node
- But
 - Can waste space and slow down find operations
 - Make some operations more complicated:
 - e.g., findMin and findMax?

BuildTree for BST

- Let's consider buildTree
 - Insert all, starting from an empty tree

– If inserted in given order, what is the tree?



$$1 + 2 + 3 + \ldots + n = n(n+1)/2$$

 $O(n^2)$

Not a happy place

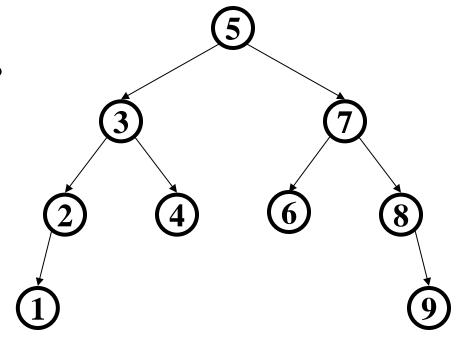
— Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What if we could somehow re-arrange them
 - median first, then left median, right median, etc.
 - -5, 3, 7, 2, 1, 4, 8, 6, 9
 - What tree does that give us?
 - What big-O runtime?

O(n log n), definitely better

So the order the values come in is important!



Complexity of Building a Binary Search Tree

Worst case: O(n²)

Best case: O(n log n)

We do better by keeping the tree balanced.