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Announcements 

• Homework 3 is out. 
 

• Today 
– Finish AVL Trees 
– Start Priority Queues 
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The AVL Tree Data Structure 
An AVL tree is a self-balancing binary search tree. 
 
Structural properties 

1. Binary tree property (same as BST) 
2. Order property (same as for BST) 
3. Balance property: 

balance of every node is between -1 and 1 
 
Need to keep track of height of every node and maintain 
balance as we perform operations. 
 

Winter 2015 CSE373: Data Structures & Algorithms 



AVL Trees: Insert 

• Insert as in a BST (add a leaf in appropriate position) 
 

• Check back up path for imbalance, which will be 1 of 4 cases: 
1. Unbalanced node’s left-left grandchild is too tall 
2. Unbalanced node’s left-right grandchild is too tall 
3. Unbalanced node’s right-left grandchild is too tall 
4. Unbalanced node’s right-right grandchild is too tall 

 

• Only one case occurs because tree was balanced before insert 
 

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
– So all ancestors are now balanced 
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AVL Trees: Single rotation 
• Single rotation:  

– The basic operation we’ll use to rebalance an AVL Tree 
– Move child of unbalanced node into parent position 
– Parent becomes the “other” child (always okay in a BST!) 
– Other sub-trees move in only way BST allows 
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The general left-left case 
• Insertion into left-left grandchild causes an imbalance at node a  

– Move child of unbalanced node into parent position 
– Parent becomes the “other” child 
– Other sub-trees move in the only way BST allows:  

• using BST facts: X < b < Y < a < Z 
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• A single rotation restores balance at the node 
– To same height as before insertion, so ancestors now balanced 
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The general right-right case 

• Mirror image to left-left case, so you rotate the other way 
– Exact same concept, but need different code 
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The general right-left case 
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Comments 
• Like in the left-left and right-right cases, the height of the subtree 

after rebalancing is the same as before the insert 
– So no ancestor in the tree will need rebalancing 

• Does not have to be implemented as two rotations; can just do: 
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• Easier to remember than you may think: 
 Move c to grandparent’s position 
 Put a, b, X, U, V, and Z in the only legal positions for a BST 



The general left-right case 

• Mirror image of right-left 
– Again, no new concepts, only new code to write 
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Insert into an AVL tree: a b e c d 

 

Student Activity Circle your final answer AVL Trees 
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Insert 33: Single Rotation 
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Insert 18 
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Insert 18: Double Rotation (Step #1) 
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Insert 18: Double Rotation (Step #2) 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1. All operations logarithmic worst-case because trees are always  

balanced 
2. Height balancing adds no more than a constant factor to the speed 

of insert and delete 
 
Arguments against AVL trees: 
 
1. More difficult to program & debug [but done once in a library!] 
2. More space for height field 
3. Asymptotically faster but rebalancing takes a little time 
4. If amortized (later) logarithmic time is enough, use splay trees (in 

the text) 



Done with AVL Trees 
 
next up… 
 
Priority Queues ADT 
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A new ADT: Priority Queue 

• A priority queue holds compare-able data 
 

– Like dictionaries, we need to compare items 
• Given x and y, is x less than, equal to, or greater than y 
• Meaning of the ordering can depend on your data 
 

– Integers are comparable, so will use them in examples 
• But the priority queue ADT is much more general 
• Typically two fields, the priority and the data 
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Priorities 
• Each item has a “priority” 

– In our examples, the lesser item is the one with the greater priority 
– So “priority 1” is more important than “priority 4” 
– (Just a convention, think “first is best”) 

 
 
 

• Operations:  
– insert 
– deleteMin 
– is_empty 

 
• Key property: deleteMin  returns and deletes the item with greatest 

priority (lowest priority value) 
– Can resolve ties arbitrarily 
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insert deleteMin 

        6        2 
  15        23 
          12   18 
45   3    7 



Example 

 insert x1 with priority 5 
 insert x2 with priority 3 
 insert x3 with priority 4 
 a = deleteMin // x2 
 b = deleteMin // x3 
 insert x4 with priority 2 
 insert x5 with priority 6 
 c = deleteMin // x4 
 d = deleteMin  // x1 
 
• Analogy: insert is like enqueue, deleteMin is like dequeue 

– But the whole point is to use priorities instead of FIFO 
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Applications 

Like all good ADTs, the priority queue arises often 
– Sometimes blatant, sometimes less obvious 

 
• Run multiple programs in the operating system 

– “critical” before “interactive” before “compute-intensive” 
– Maybe let users set priority level 

• Treat hospital patients in order of severity (or triage) 
• Select print jobs in order of decreasing length? 
• Forward network packets in order of urgency 
• Select most frequent symbols for data compression  
• Sort (first insert all, then repeatedly deleteMin) 

– Much like Homework 1 uses a stack to implement reverse 
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Finding a good data structure 

• Will show an efficient, non-obvious data structure for this ADT 
– But first let’s analyze some “obvious” ideas for n data items 
– All times worst-case; assume arrays “have room” 

 
data         insert algorithm / time      deleteMin algorithm / time 
unsorted array  
unsorted linked list 
sorted circular array 
sorted linked list  
binary search tree 
AVL tree 
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add at end          O(1)         search                O(n) 
add at front         O(1)         search                O(n) 
search / shift       O(n)          move front          O(1) 
put in right place O(n)          remove at front   O(1) 
put in right place O(n)      leftmost               O(n) 
put in right place O(log n)  leftmost       O(log n) 



Our data structure: the Binary Heap 
A binary min-heap (or just binary heap or just heap) has: 
• Structure property: A complete binary tree  
• Heap property: The priority of every (non-root) node is less than 

the priority of its parent 
– Not a binary search tree 
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So: 
• Where is the most important item? 
• What is the height of a heap with n items? 



Operations: basic idea 

• findMin: return root.data 
• deleteMin:  

1. answer = root.data 

2. Move right-most node in last 
row to root to restore 
structure property 

3. “Percolate down” to restore 
heap property 

• insert: 

1. Put new node in next position 
on bottom row to restore 
structure property 

2. “Percolate up” to restore 
heap property 
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Overall strategy: 
• Preserve structure property 
• Break and restore heap 

property 
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DeleteMin 

3 4 
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Delete (and later return) value at root node 
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DeleteMin: Keep the Structure Property 

• We now have a “hole” at the root 
– Need to fill the hole with another value 

 
• Keep structure property: When we are done, 

the tree will have one less node and must still 
be complete 
 

• Pick the last node on the bottom row of the 
tree and move it to the “hole” 
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DeleteMin: Restore the Heap Property 
Percolate down:  
•  Keep comparing priority of item with both children  
•  If priority is less important (>) than either, swap with the most 
    important (smaller) child and go down one level 
•  Done if both children are less important (>) than the item or we’ve 
 reached a leaf node 
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Why is this correct?   
What is the run time? 
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DeleteMin: Run Time Analysis 

• Run time is O(height of heap) 
 

• A heap is a complete binary tree 
 

• Height of a complete binary tree of n nodes? 
– height =  log2(n)  

 
• Run time of deleteMin is O(log n) 
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Insert 

• Add a value to the tree 
 

• Afterwards, structure and heap 
properties must still be correct 

 8 4 

9 10 5 7 

6 9 11 

1 

2 

Winter 2015 
CSE373: Data Structures & Algorithms 



32 

Insert: Maintain the Structure Property 

• There is only one valid tree shape after 
we add one more node 
 

• So put our new data there and then 
focus on restoring the heap property 
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Insert: Restore the heap property 
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Percolate up: 
•  Put new data in new location 
•  If parent is less important (>), swap with parent, and continue 
•  Done if parent is more important (<) than item or reached root 
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What is the running time? 
Like deleteMin, worst-case time proportional to tree height: O(log n) 



Summary 
• Priority Queue ADT:  

– insert comparable object,  
– deleteMin 

 

• Binary heap data structure:  
– Complete binary tree  
– Each node has less important  
 priority value than its parent 

 
• insert and deleteMin operations = O(height-of-tree)=O(log n) 

– insert:        put at new last position in tree and percolate-up 
– deleteMin:  remove root, put last element at root and   

                     percolate-down 
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