
CSE373: Data Structures & Algorithms

Lecture 8: AVL Trees and Priority Queues

Linda Shapiro
Winter 2015

Announcements

• Homework 3 is out.

• Today
– Finish AVL Trees
– Start Priority Queues

Winter 2015 2 CSE373: Data Structures & Algorithms

3

The AVL Tree Data Structure
An AVL tree is a self-balancing binary search tree.

Structural properties

1. Binary tree property (same as BST)
2. Order property (same as for BST)
3. Balance property:

balance of every node is between -1 and 1

Need to keep track of height of every node and maintain
balance as we perform operations.

Winter 2015 CSE373: Data Structures & Algorithms

AVL Trees: Insert

• Insert as in a BST (add a leaf in appropriate position)

• Check back up path for imbalance, which will be 1 of 4 cases:
1. Unbalanced node’s left-left grandchild is too tall
2. Unbalanced node’s left-right grandchild is too tall
3. Unbalanced node’s right-left grandchild is too tall
4. Unbalanced node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

Winter 2015 4 CSE373: Data Structures & Algorithms

AVL Trees: Single rotation
• Single rotation:

– The basic operation we’ll use to rebalance an AVL Tree
– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other sub-trees move in only way BST allows

Winter 2015 5 CSE373: Data Structures & Algorithms

The general left-left case
• Insertion into left-left grandchild causes an imbalance at node a

– Move child of unbalanced node into parent position
– Parent becomes the “other” child
– Other sub-trees move in the only way BST allows:

• using BST facts: X < b < Y < a < Z

Winter 2015 6 CSE373: Data Structures & Algorithms

• A single rotation restores balance at the node
– To same height as before insertion, so ancestors now balanced

a

Z
Y

b

X

h+1 h
h

h+2
h+3 b

Z Y

a
h+1 h h

h+1

h+2

X

The general right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code

Winter 2015 7 CSE373: Data Structures & Algorithms

a

Z Y

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h
h+1

h+1
h+2

The general right-left case

Winter 2015 8 CSE373: Data Structures & Algorithms

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V
U

h+2

h+3

Z

b
h

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

Comments
• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

Winter 2015 9 CSE373: Data Structures & Algorithms

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

• Easier to remember than you may think:
 Move c to grandparent’s position
 Put a, b, X, U, V, and Z in the only legal positions for a BST

The general left-right case

• Mirror image of right-left
– Again, no new concepts, only new code to write

Winter 2015 10 CSE373: Data Structures & Algorithms

a

h-1

h

h h

V U

h+1

h+2

h+3

Z

X

b
c

c

X
h-1

h+1
h

h+1

V U

h+2

Z

a
h

b
h

11

Insert into an AVL tree: a b e c d

Student Activity Circle your final answer AVL Trees

4/15/2013 12

Insert 3

20 9 2

15 5

10

30 17

Insert(3)

12
0

0

1 0 0

1 2

3

0

Unbalanced?

AVL Trees

4/15/2013 13

Insert 33

20 9 2

15 5

10

30 17

Insert(33)

3

12
1

0

1 0 0

2 2

3

0 0

How to fix?

Unbalanced?

AVL Trees

14

Insert 33: Single Rotation

20 9 2

15 5

10

30 17 3

12

33

1

0

2 0 0

2 3

3

1 0

0

30 9 2

20 5

10

33 3

15
1

0

1 1 0

2 2

3

0 0
17 12

0

AVL Trees

15

Insert 18

Insert(18)

20 9 2

15 5

10

30 17 3

12
1

0

1 0 0

2 2

3

0 0

How to fix?

Unbalanced?

AVL Trees

18

4/15/2013 16

Insert 18: Double Rotation (Step #1)

20 9 2

15 5

10

30 17 3

12
1

1

2 0 0

2 3

3

0 0

18
0

17 9 2

15 5

10

20 3

12
1 2 0 0

2 3

3

1 0

30
0

18
0

AVL Trees

4/15/2013 17

Insert 18: Double Rotation (Step #2)

17 9 2

15 5

10

20 3

12
1 2 0 0

2 3

3

1 0

30
0

18
0

20 9 2

17 5

10

30 3

15
1

 0

1 1 0

2 2

3

0 0
12

0
18

AVL Trees

Pros and Cons of AVL Trees

Winter 2015 CSE373: Data Structures & Algorithms 18

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always

balanced
2. Height balancing adds no more than a constant factor to the speed

of insert and delete

Arguments against AVL trees:

1. More difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If amortized (later) logarithmic time is enough, use splay trees (in

the text)

Done with AVL Trees

next up…

Priority Queues ADT

Winter 2015 CSE373: Data Structures & Algorithms 19

A new ADT: Priority Queue

• A priority queue holds compare-able data

– Like dictionaries, we need to compare items
• Given x and y, is x less than, equal to, or greater than y
• Meaning of the ordering can depend on your data

– Integers are comparable, so will use them in examples
• But the priority queue ADT is much more general
• Typically two fields, the priority and the data

Winter 2015 20 CSE373: Data Structures & Algorithms

Priorities
• Each item has a “priority”

– In our examples, the lesser item is the one with the greater priority
– So “priority 1” is more important than “priority 4”
– (Just a convention, think “first is best”)

• Operations:
– insert
– deleteMin
– is_empty

• Key property: deleteMin returns and deletes the item with greatest

priority (lowest priority value)
– Can resolve ties arbitrarily

Winter 2015 21 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

 insert x1 with priority 5
 insert x2 with priority 3
 insert x3 with priority 4
 a = deleteMin // x2
 b = deleteMin // x3
 insert x4 with priority 2
 insert x5 with priority 6
 c = deleteMin // x4
 d = deleteMin // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue

– But the whole point is to use priorities instead of FIFO

Winter 2015 22 CSE373: Data Structures & Algorithms

Applications

Like all good ADTs, the priority queue arises often
– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”
– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression
• Sort (first insert all, then repeatedly deleteMin)

– Much like Homework 1 uses a stack to implement reverse

Winter 2015 23 CSE373: Data Structures & Algorithms

Finding a good data structure

• Will show an efficient, non-obvious data structure for this ADT
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array
unsorted linked list
sorted circular array
sorted linked list
binary search tree
AVL tree

Winter 2015 24 CSE373: Data Structures & Algorithms

add at end O(1) search O(n)
add at front O(1) search O(n)
search / shift O(n) move front O(1)
put in right place O(n) remove at front O(1)
put in right place O(n) leftmost O(n)
put in right place O(log n) leftmost O(log n)

Our data structure: the Binary Heap
A binary min-heap (or just binary heap or just heap) has:
• Structure property: A complete binary tree
• Heap property: The priority of every (non-root) node is less than

the priority of its parent
– Not a binary search tree

Winter 2015 25 CSE373: Data Structures & Algorithms

15 30

80 20

10 not a heap

99 60 40

80 20

10

50 700

85

a heap

So:
• Where is the most important item?
• What is the height of a heap with n items?

Operations: basic idea

• findMin: return root.data
• deleteMin:

1. answer = root.data

2. Move right-most node in last
row to root to restore
structure property

3. “Percolate down” to restore
heap property

• insert:

1. Put new node in next position
on bottom row to restore
structure property

2. “Percolate up” to restore
heap property
 Winter 2015 26 CSE373: Data Structures & Algorithms

99 60 40

80 20

10

50 700

85

Overall strategy:
• Preserve structure property
• Break and restore heap

property

27

DeleteMin

3 4

9 8 5 7

10 6 9 11

Delete (and later return) value at root node

Winter 2015 CSE373: Data Structures & Algorithms

1

28

DeleteMin: Keep the Structure Property

• We now have a “hole” at the root
– Need to fill the hole with another value

• Keep structure property: When we are done,

the tree will have one less node and must still
be complete

• Pick the last node on the bottom row of the
tree and move it to the “hole”

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11
Winter 2015 CSE373: Data Structures & Algorithms

29

DeleteMin: Restore the Heap Property
Percolate down:
• Keep comparing priority of item with both children
• If priority is less important (>) than either, swap with the most
 important (smaller) child and go down one level
• Done if both children are less important (>) than the item or we’ve
 reached a leaf node

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

Winter 2015 CSE373: Data Structures & Algorithms

Why is this correct?
What is the run time?

30

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
– height = log2(n)

• Run time of deleteMin is O(log n)

Winter 2015 CSE373: Data Structures & Algorithms

31

Insert

• Add a value to the tree

• Afterwards, structure and heap
properties must still be correct

 8 4

9 10 5 7

6 9 11

1

2

Winter 2015
CSE373: Data Structures & Algorithms

32

Insert: Maintain the Structure Property

• There is only one valid tree shape after
we add one more node

• So put our new data there and then
focus on restoring the heap property

8 4

9 10 5 7

6 9 11

1

2

Winter 2015 CSE373: Data Structures & Algorithms

33

Insert: Restore the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
• Put new data in new location
• If parent is less important (>), swap with parent, and continue
• Done if parent is more important (<) than item or reached root

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

Winter 2015 CSE373: Data Structures & Algorithms

2

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)

Summary
• Priority Queue ADT:

– insert comparable object,
– deleteMin

• Binary heap data structure:
– Complete binary tree
– Each node has less important
 priority value than its parent

• insert and deleteMin operations = O(height-of-tree)=O(log n)

– insert: put at new last position in tree and percolate-up
– deleteMin: remove root, put last element at root and

 percolate-down

Winter 2015 34 CSE373: Data Structures & Algorithms

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

99 60 40

80 20

10

700 50

85

	CSE373: Data Structures & Algorithms��Lecture 8: AVL Trees and Priority Queues
	Announcements
	The AVL Tree Data Structure
	AVL Trees: Insert
	AVL Trees: Single rotation
	The general left-left case
	The general right-right case
	The general right-left case
	Comments
	The general left-right case
	Insert into an AVL tree: a b e c d
	Insert 3
	Insert 33
	Insert 33: Single Rotation
	Insert 18
	Insert 18: Double Rotation (Step #1)
	Insert 18: Double Rotation (Step #2)
	Pros and Cons of AVL Trees
	Done with AVL Trees��next up…��Priority Queues ADT�
	A new ADT: Priority Queue
	Priorities
	Example
	Applications
	Finding a good data structure
	Our data structure: the Binary Heap
	Operations: basic idea
	DeleteMin
	DeleteMin: Keep the Structure Property
	DeleteMin: Restore the Heap Property
	DeleteMin: Run Time Analysis
	Insert
	Insert: Maintain the Structure Property
	Insert: Restore the heap property
	Summary

