CSE373: Data Structures \& Algorithms
Lecture 9: Priority Queues and Binary Heaps

Linda Shapiro
Winter 2015

Priority Queue ADT

- A priority queue holds compare-able items
- Each item in the priority queue has a "priority" and "data"
- In our examples, the lesser item is the one with the greater priority
- So "priority 1" is more important than "priority 4"
- Operations:
- insert: adds an element to the priority queue
- deleteMin: returns and deletes the item with greatest priority (min)
- is_empty
- Our data structure: A binary min-heap (or binary heap or heap) has:
- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is less important than $(>)$ the priority of its parent (Not a binary search tree)

Operations: basic idea

- deleteMin:

1. Remove root node
2. Move right-most node in last row to root to restore structure property
3. "Percolate down" to restore heap property

- insert:

1. Put new node in next position on bottom row to restore structure property
2. "Percolate up" to restore heap property

Overall strategy:

- Preserve structure property
- Break and restore heap property

DeleteMin

Delete (and later return) value at root node

DeleteMin: Keep the Structure Property

- We now have a "hole" at the root
- Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete

- Pick the last node on the bottom row of the tree and move it to the "hole"

DeleteMin: Restore the Heap Property

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we've reached a leaf node

Run time?
Runtime is O (height of heap) $\quad O(\log n)$
Height of a complete binary tree of n nodes $=\left\lfloor\log _{2}(n)\right\rfloor$

Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Insert: Restore the heap property

Percolate up:

- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?
Like deleteMin, worst-case time proportional to tree height: $O(\log n)$

Array Representation of Binary Trees

From node \mathbf{i} :
left child: i*2 right child: $\mathbf{i * 2 + 1}$ parent: i/2
(wasting index 0 is convenient for the index arithmetic)
implicit (array) implementation:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Judging the array implementation

Plusses:

- Non-data space: just index 0 and unused space on right
- In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
- Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:

- Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

This pseudocode uses ints. In real use, you will have data nodes with priorities.

Pseudocode: insert into binary heap

```
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```

int percolateUp(int hole,
int val) \{
while(hole > 1 \&\&
val < arr[hole/2])
$\operatorname{arr}[$ hole $]=\operatorname{arr}[$ hole/2];
hole = hole / 2;
\}
\} int percolateUp(int hole, while(hole > 1 \&\& val < arr[hole/2]) hole = hole / 2;

Pseudocode: deleteMin from binary heap

```
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
            (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```


70050
int percolateDown(int hole, int val) \{ while(2*hole <= size) \{
left = 2*hole; right = left + 1; if(right > size || $\operatorname{arr}[l e f t]<\operatorname{arr}[r i g h t])$ target = left;
else
target = right;
if(arr[target] < val) \{ arr[hole] = arr[target]; hole = target;
\} else
break;
\} return hole;
\}

	10	20	80	40	60	85	99	700	50				
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

	$\mathbf{1 6}$						
0	1	2	3	4	5	6	7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

	$\mathbf{1 6}$	$\mathbf{3 2}$					
0	1	2	3	4	5	6	7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$				
0	1	2	3	4	5	6	7

Example

1. insert: $16,32,4,67,105,43,2$
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{6 7}$			
0	1	2	3	4	5	6	7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{6 7}$	$\mathbf{1 0 5}$		
0	1	2	3	4	5	6	7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

	$\mathbf{4}$	$\mathbf{3 2}$	$\mathbf{1 6}$	$\mathbf{6 7}$	$\mathbf{1 0 5}$	$\mathbf{4 3}$	
0	1	2	3	4	5	6	7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

	$\mathbf{2}$	$\mathbf{3 2}$	$\mathbf{4}$	$\mathbf{6 7}$	$\mathbf{1 0 5}$	$\mathbf{4 3}$	$\mathbf{1 6}$
0	1	2	3	4	5	6	7

Other operations

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
- Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
- Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
- decreaseKey with $p=\infty$, then deleteMin

Running time for all these operations?

Build Heap

- Suppose you have n items to put in a new (empty) priority queue
- Call this operation buildHeap
- n inserts works
- Only choice if ADT doesn't provide buildHeap explicitly
- O($n \log n$)
- Why would an ADT provide this unnecessary operation?
- Convenience
- Efficiency: an $O(n)$ algorithm called Floyd's Method
- Common issue in ADT design: how many specialized operations

Floyd's Method

1. Use n items to make any complete tree you want

- That is, put them in array indices $1, \ldots, n$

2. Treat it as a heap and fix the heap-order property

- Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```


Example

- In tree form for readability
- Purple for node not less than descendants
- heap-order problem
- Notice no leaves are purple
- Check/fix each non-leaf bottom-up (6 steps here)

Example

- Happens to already be less than children (er, child)

Example

- Percolate down (notice that moves 1 up)

Example

- Another nothing-to-do step

Example

- Percolate down as necessary (steps 4a and 4b)

Example

Example

But is it right?

- "Seems to work"
- Let's prove it restores the heap property (correctness)
- Then let's prove its running time (efficiency)

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```


Correctness

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Loop Invariant: For all $\mathbf{j}>\mathbf{i}, \operatorname{arr}[\mathbf{j}]$ is less than its children

- True initially: If $\mathbf{j}>\boldsymbol{s i z e} / \mathbf{2}$, then \mathbf{j} is a leaf
- Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants
So after the loop finishes, all nodes are less than their children

Efficiency

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
            val = arr[i];
            hole = percolateDown(i,val);
            arr[hole] = val;
        }
}
```

Better argument: buildHeap is $O(n)$ where n is size

- size/2 total loop iterations: $O(n)$
- $1 / 2$ the loop iterations percolate at most 1 step
- $1 / 4$ the loop iterations percolate at most 2 steps
- $1 / 8$ the loop iterations percolate at most 3 steps
- $((1 / 2)+(2 / 4)+(3 / 8)+(4 / 16)+(5 / 32)+\ldots)<2$ (page 4 of Weiss)
- So at most 2*(size/2) total percolate steps: $O(n)$

Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in $O(n \log n)$ worst case
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
- Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
- Correctness:
- Non-trivial inductive proof using loop invariant
- Efficiency:
- First analysis easily proved it was $O(n \log n)$
- Tighter analysis shows same algorithm is $O(n)$

