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Priority Queue ADT 
• A priority queue holds compare-able items 
• Each item in the priority queue has a “priority” and “data” 

– In our examples, the lesser item is the one with the greater priority 
– So “priority 1” is more important than “priority 4” 
 

• Operations:  
– insert: adds an element to the priority queue 
– deleteMin: returns and deletes the item with greatest priority (min) 
– is_empty 

 

• Our data structure: A binary min-heap (or binary heap or heap) has: 
– Structure property: A complete binary tree  
– Heap property: The priority of every (non-root) node is less important 

than (>) the priority of its parent (Not a binary search tree) 
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Operations: basic idea 

• deleteMin:  
1. Remove root node 
2. Move right-most node in last 

row to root to restore 
structure property 

3. “Percolate down” to restore 
heap property 

• insert: 

1. Put new node in next position 
on bottom row to restore 
structure property 

2. “Percolate up” to restore 
heap property 
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Overall strategy: 
• Preserve structure property 
• Break and restore heap 

property 
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Delete (and later return) value at root node 
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DeleteMin: Keep the Structure Property 

• We now have a “hole” at the root 
– Need to fill the hole with another value 

 
• Keep structure property: When we are done, 

the tree will have one less node and must still 
be complete 
 

• Pick the last node on the bottom row of the 
tree and move it to the “hole” 
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DeleteMin: Restore the Heap Property 
Percolate down:  
•  Keep comparing priority of item with both children  
•  If priority is less important, swap with the most important child and 
 go down one level 
•  Done if both children are less important than the item or we’ve 
 reached a leaf node 
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Run time?  
Runtime is O(height of heap)  
Height of a complete binary tree of n nodes =  log2(n)  

O(log n) 
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Insert 

• Add a value to the tree 
 

• Afterwards, structure and heap 
properties must still be correct 
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Insert: Maintain the Structure Property 

• There is only one valid tree shape after 
we add one more node 
 

• So put our new data there and then 
focus on restoring the heap property 
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Insert: Restore the heap property 
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Percolate up: 
•  Put new data in new location 
•  If parent is less important, swap with parent, and continue 
•  Done if parent is more important than item or reached root 
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What is the running time? 
Like deleteMin, worst-case time proportional to tree height: O(log n) 
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Array Representation of Binary Trees 
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From node i: 
 
left child: i*2 
right child: i*2+1 
parent: i/2 
 
(wasting index 0 is 
convenient for the 
index arithmetic) 
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implicit (array) implementation: 
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Judging the array implementation 

Plusses: 
• Non-data space: just index 0 and unused space on right 

– In conventional tree representation, one edge per node 
(except for root), so n-1 wasted space (like linked lists) 

– Array would waste more space if tree were not complete 
• Multiplying and dividing by 2 is very fast (shift operations in 

hardware) 
• Last used position is just index size 

 

Minuses: 
• Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary) 
 

Plusses outweigh minuses: “this is how people do it” 
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Pseudocode: insert into binary heap 
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void insert(int val) { 
 if(size==arr.length-1) 
    resize();   
  size++; 
  i=percolateUp(size,val); 
  arr[i] = val; 
} 

int percolateUp(int hole,  
                int val) { 
  while(hole > 1 && 
        val < arr[hole/2]) 
    arr[hole] = arr[hole/2]; 
    hole = hole / 2; 
  } 
  return hole; 
} 
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This pseudocode uses ints.  In real use, 
you will have data nodes with priorities. 



Pseudocode: deleteMin from binary heap 
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int deleteMin() { 
  if(isEmpty()) throw… 
  ans = arr[1]; 
  hole = percolateDown 
          (1,arr[size]); 
  arr[hole] = arr[size]; 
  size--; 
  return ans; 
} 

int percolateDown(int hole, 
                  int val) { 
 while(2*hole <= size) { 
  left  = 2*hole;  
  right = left + 1; 
  if(right > size || 
     arr[left] < arr[right]) 
    target = left; 
  else 
    target = right; 
  if(arr[target] < val) { 
    arr[hole] = arr[target]; 
    hole = target; 
  } else 
      break; 
 } 
 return hole; 
} 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Example 

1. insert: 16, 32, 4, 67, 105, 43, 2 
2. deleteMin 
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Other operations 

• decreaseKey: given pointer to object in priority queue (e.g., its 
array index), lower its priority value by p 
– Change priority and percolate up 

 
• increaseKey: given pointer to object in priority queue (e.g., its 

array index), raise its priority value by p 
– Change priority and percolate down 

 
• remove: given pointer to object in priority queue (e.g., its array 

index), remove it from the queue 
– decreaseKey with p = ∞, then deleteMin 
 

Running time for all these operations? 
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Build Heap 

• Suppose you have n items to put in a new (empty) priority queue 
– Call this operation buildHeap  

 
• n inserts works 

– Only choice if ADT doesn’t provide buildHeap explicitly 
– O(n log n) 

 
• Why would an ADT provide this unnecessary operation? 

– Convenience 
– Efficiency: an O(n) algorithm called Floyd’s Method 
– Common issue in ADT design: how many specialized 

operations 
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Floyd’s Method 

1. Use n items to make any complete tree you want 
– That is, put them in array indices 1,…,n 

 
2. Treat it as a heap and fix the heap-order property 

– Bottom-up: leaves are already in heap order, work up 
toward the root one level at a time 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 
    val  = arr[i]; 
   hole = percolateDown(i,val); 
    arr[hole] = val; 
  } 
} 



Example 

• In tree form for readability 
– Purple for node not less than 

descendants  
• heap-order problem 

– Notice no leaves are purple 
– Check/fix each non-leaf 

bottom-up (6 steps here) 
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Example 
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Step 1 

• Happens to already be less than children (er, child) 
 



Example 
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Step 2 

• Percolate down (notice that moves 1 up) 
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Example 
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Step 3 

• Another nothing-to-do step 
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Example 
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Step 4 

• Percolate down as necessary (steps 4a and 4b) 
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Example 
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Example 
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But is it right? 

• “Seems to work” 
– Let’s prove it restores the heap property (correctness) 
– Then let’s prove its running time (efficiency) 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 
    val  = arr[i]; 
   hole = percolateDown(i,val); 
    arr[hole] = val; 
  } 
} 



Correctness 

Loop Invariant: For all j>i, arr[j] is less than its children 
• True initially: If j > size/2, then j is  a leaf 

– Otherwise its left child would be at position > size 
• True after one more iteration: loop body and percolateDown 

make arr[i] less than children without breaking the property 
for any descendants 

So after the loop finishes, all nodes are less than their children 

Winter 2015 33 CSE 373 Data Structures & Algorithms 

void buildHeap() { 
 for(i = size/2; i>0; i--) { 
    val  = arr[i]; 
   hole = percolateDown(i,val); 
    arr[hole] = val; 
  } 
} 



Efficiency 

Easy argument:  buildHeap is O(n log n) where n is size 
• size/2 loop iterations 
• Each iteration does one percolateDown, each is O(log n) 

 
This is correct, but there is a more precise (“tighter”) analysis of 

the algorithm… 
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 
    val  = arr[i]; 
   hole = percolateDown(i,val); 
    arr[hole] = val; 
  } 
} 



Efficiency 

Better argument:  buildHeap is O(n) where n is size 
• size/2 total loop iterations: O(n) 
• 1/2 the loop iterations percolate at most 1 step 
• 1/4 the loop iterations percolate at most 2 steps 
• 1/8 the loop iterations percolate at most 3 steps 
• … 
• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2  (page 4 of Weiss) 

– So at most 2*(size/2) total percolate steps: O(n)  
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void buildHeap() { 
 for(i = size/2; i>0; i--) { 
    val  = arr[i]; 
   hole = percolateDown(i,val); 
    arr[hole] = val; 
  } 
} 



Lessons from buildHeap 

• Without buildHeap, our ADT already let clients implement their 
own in  O(n log n) worst case 

 

• By providing a specialized operation internal to the data structure 
(with access to the internal data), we can do O(n) worst case 
– Intuition: Most data is near a leaf, so better to percolate down 

 

• Can analyze this algorithm for: 
– Correctness:  

• Non-trivial inductive proof using loop invariant 
– Efficiency: 

• First analysis easily proved it was O(n log n) 
• Tighter analysis shows same algorithm is O(n) 
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