
CSE373: Data Structures & Algorithms

Lecture 9: Priority Queues and Binary Heaps

Linda Shapiro
Winter 2015

Priority Queue ADT
• A priority queue holds compare-able items
• Each item in the priority queue has a “priority” and “data”

– In our examples, the lesser item is the one with the greater priority
– So “priority 1” is more important than “priority 4”

• Operations:
– insert: adds an element to the priority queue
– deleteMin: returns and deletes the item with greatest priority (min)
– is_empty

• Our data structure: A binary min-heap (or binary heap or heap) has:
– Structure property: A complete binary tree
– Heap property: The priority of every (non-root) node is less important

than (>) the priority of its parent (Not a binary search tree)

 Winter 2015 2 CSE 373 Data Structures & Algorithms

Operations: basic idea

• deleteMin:
1. Remove root node
2. Move right-most node in last

row to root to restore
structure property

3. “Percolate down” to restore
heap property

• insert:

1. Put new node in next position
on bottom row to restore
structure property

2. “Percolate up” to restore
heap property

Winter 2015 3 CSE 373 Data Structures & Algorithms

99 60 40

80 20

10

50 700

85

Overall strategy:
• Preserve structure property
• Break and restore heap

property

4

DeleteMin

3 4

9 8 5 7

10 6 9 11

Delete (and later return) value at root node

Winter 2015 CSE 373 Data Structures & Algorithms

1

5

DeleteMin: Keep the Structure Property

• We now have a “hole” at the root
– Need to fill the hole with another value

• Keep structure property: When we are done,

the tree will have one less node and must still
be complete

• Pick the last node on the bottom row of the
tree and move it to the “hole”

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11
Winter 2015 CSE 373 Data Structures & Algorithms

6

DeleteMin: Restore the Heap Property
Percolate down:
• Keep comparing priority of item with both children
• If priority is less important, swap with the most important child and
 go down one level
• Done if both children are less important than the item or we’ve
 reached a leaf node

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

Winter 2015 CSE 373 Data Structures & Algorithms

Run time?
Runtime is O(height of heap)
Height of a complete binary tree of n nodes = log2(n)

O(log n)

7

Insert

• Add a value to the tree

• Afterwards, structure and heap
properties must still be correct

 8 4

9 10 5 7

6 9 11

1

2

Winter 2015
CSE 373 Data Structures & Algorithms

8

Insert: Maintain the Structure Property

• There is only one valid tree shape after
we add one more node

• So put our new data there and then
focus on restoring the heap property

8 4

9 10 5 7

6 9 11

1

2

Winter 2015 CSE 373 Data Structures & Algorithms

9

Insert: Restore the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
• Put new data in new location
• If parent is less important, swap with parent, and continue
• Done if parent is more important than item or reached root

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

Winter 2015 CSE 373 Data Structures & Algorithms

2

What is the running time?
Like deleteMin, worst-case time proportional to tree height: O(log n)

Winter 2015 10

Array Representation of Binary Trees

G E D

C B

A

J K H I

F

L

From node i:

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient for the
index arithmetic)

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

implicit (array) implementation:

CSE 373 Data Structures & Algorithms

Judging the array implementation

Plusses:
• Non-data space: just index 0 and unused space on right

– In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

– Array would waste more space if tree were not complete
• Multiplying and dividing by 2 is very fast (shift operations in

hardware)
• Last used position is just index size

Minuses:
• Same might-be-empty or might-get-full problems we saw with

stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Winter 2015 11 CSE 373 Data Structures & Algorithms

Pseudocode: insert into binary heap

Winter 2015 12 CSE 373 Data Structures & Algorithms

void insert(int val) {
 if(size==arr.length-1)
 resize();
 size++;
 i=percolateUp(size,val);
 arr[i] = val;
}

int percolateUp(int hole,
 int val) {
 while(hole > 1 &&
 val < arr[hole/2])
 arr[hole] = arr[hole/2];
 hole = hole / 2;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

This pseudocode uses ints. In real use,
you will have data nodes with priorities.

Pseudocode: deleteMin from binary heap

Winter 2015 13 CSE 373 Data Structures & Algorithms

int deleteMin() {
 if(isEmpty()) throw…
 ans = arr[1];
 hole = percolateDown
 (1,arr[size]);
 arr[hole] = arr[size];
 size--;
 return ans;
}

int percolateDown(int hole,
 int val) {
 while(2*hole <= size) {
 left = 2*hole;
 right = left + 1;
 if(right > size ||
 arr[left] < arr[right])
 target = left;
 else
 target = right;
 if(arr[target] < val) {
 arr[hole] = arr[target];
 hole = target;
 } else
 break;
 }
 return hole;
}

99 60 40

80 20

10

700 50

85

10 20 80 40 60 85 99 700 50
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 14 CSE 373 Data Structures & Algorithms

0 1 2 3 4 5 6 7

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 15 CSE 373 Data Structures & Algorithms

16
0 1 2 3 4 5 6 7

 16

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 16 CSE 373 Data Structures & Algorithms

16 32
0 1 2 3 4 5 6 7

 16

32

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 17 CSE 373 Data Structures & Algorithms

4 32 16
0 1 2 3 4 5 6 7

 4

32 16

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 18 CSE 373 Data Structures & Algorithms

4 32 16 67
0 1 2 3 4 5 6 7

 4

32 16

67

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 19 CSE 373 Data Structures & Algorithms

4 32 16 67 105
0 1 2 3 4 5 6 7

 4

32 16

105 67

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 20 CSE 373 Data Structures & Algorithms

4 32 16 67 105 43
0 1 2 3 4 5 6 7

 4

32 16

43 105 67

Example

1. insert: 16, 32, 4, 67, 105, 43, 2
2. deleteMin

Winter 2015 21 CSE 373 Data Structures & Algorithms

2 32 4 67 105 43 16
0 1 2 3 4 5 6 7

 2

32 4

16 43 105 67

Other operations

• decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
– Change priority and percolate up

• increaseKey: given pointer to object in priority queue (e.g., its

array index), raise its priority value by p
– Change priority and percolate down

• remove: given pointer to object in priority queue (e.g., its array

index), remove it from the queue
– decreaseKey with p = ∞, then deleteMin

Running time for all these operations?

Winter 2015 22 CSE 373 Data Structures & Algorithms

Build Heap

• Suppose you have n items to put in a new (empty) priority queue
– Call this operation buildHeap

• n inserts works

– Only choice if ADT doesn’t provide buildHeap explicitly
– O(n log n)

• Why would an ADT provide this unnecessary operation?

– Convenience
– Efficiency: an O(n) algorithm called Floyd’s Method
– Common issue in ADT design: how many specialized

operations

Winter 2015 23 CSE 373 Data Structures & Algorithms

Floyd’s Method

1. Use n items to make any complete tree you want
– That is, put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property

– Bottom-up: leaves are already in heap order, work up
toward the root one level at a time

Winter 2015 24 CSE 373 Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Example

• In tree form for readability
– Purple for node not less than

descendants
• heap-order problem

– Notice no leaves are purple
– Check/fix each non-leaf

bottom-up (6 steps here)

Winter 2015 25 CSE 373 Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Example

Winter 2015 26 CSE 373 Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

• Happens to already be less than children (er, child)

Example

Winter 2015 27 CSE 373 Data Structures & Algorithms

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

• Percolate down (notice that moves 1 up)

6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2015 28 CSE 373 Data Structures & Algorithms

Step 3

• Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2015 29 CSE 373 Data Structures & Algorithms

Step 4

• Percolate down as necessary (steps 4a and 4b)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

Example

Winter 2015 30 CSE 373 Data Structures & Algorithms

Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

Example

Winter 2015 31 CSE 373 Data Structures & Algorithms

Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

But is it right?

• “Seems to work”
– Let’s prove it restores the heap property (correctness)
– Then let’s prove its running time (efficiency)

Winter 2015 32 CSE 373 Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
• True initially: If j > size/2, then j is a leaf

– Otherwise its left child would be at position > size
• True after one more iteration: loop body and percolateDown

make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Winter 2015 33 CSE 373 Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Efficiency

Easy argument: buildHeap is O(n log n) where n is size
• size/2 loop iterations
• Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of

the algorithm…

Winter 2015 34 CSE 373 Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Efficiency

Better argument: buildHeap is O(n) where n is size
• size/2 total loop iterations: O(n)
• 1/2 the loop iterations percolate at most 1 step
• 1/4 the loop iterations percolate at most 2 steps
• 1/8 the loop iterations percolate at most 3 steps
• …
• ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + …) < 2 (page 4 of Weiss)

– So at most 2*(size/2) total percolate steps: O(n)

Winter 2015 35 CSE 373 Data Structures & Algorithms

void buildHeap() {
 for(i = size/2; i>0; i--) {
 val = arr[i];
 hole = percolateDown(i,val);
 arr[hole] = val;
 }
}

Lessons from buildHeap

• Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case

• By providing a specialized operation internal to the data structure
(with access to the internal data), we can do O(n) worst case
– Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
– Correctness:

• Non-trivial inductive proof using loop invariant
– Efficiency:

• First analysis easily proved it was O(n log n)
• Tighter analysis shows same algorithm is O(n)

 Winter 2015 36 CSE 373 Data Structures & Algorithms

	CSE373: Data Structures & Algorithms��Lecture 9: Priority Queues and Binary Heaps
	Priority Queue ADT
	Operations: basic idea
	DeleteMin
	DeleteMin: Keep the Structure Property
	DeleteMin: Restore the Heap Property
	Insert
	Insert: Maintain the Structure Property
	Insert: Restore the heap property
	Array Representation of Binary Trees
	Judging the array implementation
	Pseudocode: insert into binary heap
	Pseudocode: deleteMin from binary heap
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Other operations
	Build Heap
	Floyd’s Method
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	But is it right?
	Correctness
	Efficiency
	Efficiency
	Lessons from buildHeap

