
CSE 373
Topological Sort and

Graph Traversals

Winter 2015
Rama Gokhale and Megan Hopp

Topological Sort

Idea:
Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

Topological Sort

● Why do we perform topological sorts only on
DAGs?

● Is there always a unique answer?
● Do some DAGs have exactly 1 answer? In

what case?

Topological Sort
● Why do we perform topological sorts only on DAGs?

○ Cycles mean that there is no correct answer

● Is there always a unique answer?
○ No, in some cases there could be multiple correct answers

● Do some DAGs have exactly 1 answer? In what case?
○ Yes, a list for example

Topological Sort Example

Idea:
● Keep track of the in-degree of each

node.
● Use a queue to ensure the proper

ordering of nodes (from least to
greatest in-degree)

● Every time an in-degree is 0,
enqueue it.

● Every time a node is processed,
decrement it’s adjacents’ in-degree.

Topological Sort Example

Graph:
A B C D E Queue

contents:

Step 1: 0 0 2 1 1 (A, B)

Initialize the in-degree array with each node’
s in-degree, enqueue all nodes with in-
degree of 0

Topological Sort Example

Graph:
A B C D E Queue

contents:

Step 1: 0 0 2 1 1 (A,B)

Step 2: 0 0 1 1 1 (B)

Process A...

Topological Sort Example

Graph:
A B C D E Queue

contents:

Step 1: 0 0 2 1 1 (A,B)

Step 2: 0 0 1 1 1 (B)

Step 3: 0 0 0 0 1 (C,D)

Process B...

Topological Sort Example

Graph:
A B C D E Queue

contents:

Step 1: 0 0 2 1 1 (A,B)

Step 2: 0 0 1 1 1 (B)

Step 3: 0 0 0 0 1 (C,D)

Step 4: 0 0 0 0 0 (D,E)

Process C...

Topological Sort Example

Graph:
A B C D E Queue

contents:

Step 1: 0 0 2 1 1 (A,B)

Step 2: 0 0 1 1 1 (B)

Step 3: 0 0 0 0 1 (C,D)

Step 4: 0 0 0 0 0 (D,E)

Step 5: 0 0 0 0 0 (E)

Process D...

Topological Sort Example

Graph: A B C D E Queue
contents:

Step 1: 0 0 2 1 1 (A,B)

Step 2: 0 0 1 1 1 (B)

Step 3: 0 0 0 0 1 (C,D)

Step 4: 0 0 0 0 0 (D,E)

Step 5: 0 0 0 0 0 (E)

Step 6: 0 0 0 0 0 ()

Process E...

Topological Sort Example

Graph: A B C D E Queue
contents:

Step 1: 0 0 2 1 1 (A,B)

Step 2: 0 0 1 1 1 (B)

Step 3: 0 0 0 0 1 (C,D)

Step 4: 0 0 0 0 0 (D,E)

Step 5: 0 0 0 0 0 (E)

Step 6: 0 0 0 0 0 ()

Final Ordering: A,B,C,D,E

Running Time
● Initialization: O(|V|+|E|) (assuming adjacency list)
● Sum of all enqueues and dequeues: O(|V|)
● Sum of all decrements: O(|E|) (assuming adjacency list)

So total is O(|E| + |V|) - much better for sparse graphs

Graph Traversals
Depth-First Search:
● Recursively explore one part before going back to the

other parts not yet explored
● Typically use a stack to keep track of which nodes to

process next (non-recursive)

Breadth-First Search:
● explore areas closer to the start node first
● Typically use a queue to keep track of which nodes to

process next

Graph Traversals

For reference:
Pseudo-code is available for DFS and BFS in the lecture
slides posted on the course website.

CSE 373 HW 5
Winter 2015

Main Idea:
Comparing literary works of Shakespeare vs. Bacon to
analyze word frequencies and squared error.

Using two types of HashTables to keep track of word
frequencies:
● Separate Chaining Implementation
● Quadratic Probing Implementation

HashTable Implementations

Responsible for:
● constructors for each
● insert(key) -- inserting a word into the HashTable (String ‘key’

parameter), if already present in the table, just increment it’s count
● findCount(key) -- finding the word count for a given word (String ‘key’

parameter)

● getNextKey() -- used to iterate through your hashtable to retrieve the
next key, should allow you to access every key in the table on subsequent
calls

Homework 5 Tips
Keep in mind that you only ever care about a word AND it’s
frequency. If you just have one or the other, it is useless for
the analysis.

For quadratic probing, a prime table size will help reduce
collisions.

Not required to make your own hash function, but you get
extra credit.

Questions?

