
CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010

L t 10 C th h d l tLecture 10 – C: the heap and manual memory management

Pointer syntaxPointer syntax

• A review (for completeness)(p)
• Declare a variable to have a pointer type:

t * x; or t* x; or t *x; or t*x;
(where t is a type and x is a variable)

• An expression to dereference a pointer:
* (*)*x (or more generally *e)

where e is an expression.
• C’s designers used the same character on purpose• C s designers used the same character on purpose,

but declarations (create space) and expressions
(compute a value) are totally different things.

2

Heap allocationHeap allocation

• So far, all of our ints, pointers, and arrays, have been
stack-allocated, which in C has two huge limitations:
– The space is reclaimed when the allocating function

returns
– The space required must be a constant (only an issue

for arrays)
• Heap-allocation has neither limitation.p
• Comparison: new T(...) in Java does all this:

– Allocate space for a T (exception if out-of-memory)
Initialize the fields to null or 0– Initialize the fields to null or 0

– Call the user-written constructor function
– Return a reference (hey, a pointer!) to the new object

• In C, these steps are almost all separated

3

malloc part 1malloc, part 1

• malloc is “just” a library function: it takes a number, j y ,
heap-allocates that many bytes and returns a pointer
to the newly-allocated memory.

R t NULL f il– Returns NULL on failure.
– Does not initialize the memory.
– You must cast the result to the pointer type you– You must cast the result to the pointer type you

want.
– You do not know how much space different values

need!
• Do not do things like malloc(17) !

4

malloc part 2malloc, part 2

• malloc is “always” used in a specific way:y p y
(t*)malloc(e * sizeof(t))

• Returns a pointer to memory large enough to hold an
array of length e with elements of type t

• It is still not initialized (use a loop)!
Underused friend: calloc (takes e and sizeof(t) as– Underused friend: calloc (takes e and sizeof(t) as
separate arguments, initializes everything to 0)

• malloc returns an untyped pointer (void*); the cast (t*) yp p (); ()
tells C to treat it as a pointer to a block of type t

5

Half the battleHalf the battle

• We can now allocate memory of any size and have it “live”
forever.

• For example, we can allocate an array and use it
indefinitely.

• Unfortunately, computers do not have infinite memory so
“living forever” could be a problem.

• Java solution: Conceptually objects live forever, but the p y j ,
system has a garbage collector that finds unreachable
objects and reclaims their space.

• C solution: You explicitly free an object’s space by passing p y j p y p g
a pointer to it to the library function free.

• Freeing heap memory correctly is very hard in complex
software and is the disadvantage of C-style heap-g y p
allocation.

6

Everybody wants to be free(d once)Everybody wants to be free(d once)

int * p = (int*)malloc(sizeof(int));
p = NULL; /* LEAK! */
int * q = (int*)malloc(sizeof(int));
free(q);
free(q); /* HYCSBWK */
int * r = (int*)malloc(sizeof(int));
free(r);()
int * s = (int*)malloc(sizeof(int));
*s = 19;
r = 17; / HYCSBWK, but maybe *s==17 ?! */; , y

• Problems much worse with functions:
– f returns a pointer; (when) should f’s caller free the

pointed-to object?
– g takes two pointers and frees one pointed-to object.

Can the other pointer be dereferenced?
7

The RulesThe Rules

• For every run-time call to malloc there should be one run-
time call to free.

• If you “lose all pointers” to an object, you can’t ever call
free (a leak)!

• If you “use an object after it’s freed” (or free it twice), you
used a dangling pointer!

• Note: It’s possible but rare to use up too much memory p p y
without creating “leaks via no more pointers to an object”.

• Interesting side-note: The standard-library must
“remember” how big the object is (but it won’t tell you).g j (y)
– We will explore this further…

later ….

8

