CSE 374
Programming Concepts & Tools

Hal Perkins
Spring 2010
Lecture 20 — C++ Subclasses and Inheritance




Subclassing

* |n many ways, OOP is “all about” subclasses overriding
methods.

— Often not what you want, but what makes OOP
fundamentally different from, say, functional
programming (CSE 413: Scheme, ML, Haskell, etc.)

« C++ gives you lots more options than Java with different
defaults, so it's easy to scream “compiler bug” when you
mean “I'm using the wrong feature”. . .

e Basic subclassing:
class D : publicC{... }

— This is public inheritance; C++ has other kinds too
(won’t cover)

 Differences affect visibility and issues when you
have multiple superclasses (won'’t cover)

e So do not forget the public keyword



More on subclassing

* Not all classes have superclasses (unlike Java with
Object)

— (and classes can have multiple superclasses —
more general and complexity-prone than Java,
where a class has one superclass and can also
Implement interfaces)

e Terminology
— Java (and others): “superclass” and “subclass”
— C++ (and others): “base class” and “derived class”

e Our example code: House derives from Land which
derives from Property

e Asin Java, can add fields/methods/constructors, and
override methods.



Constructor and destructors

« Constructor of base class gets called before constructor of
derived class

— Default (zero-arg) constructor unless you specify a
different one after the : in the constructor.

— Initializer syntax: Foo::Foo(...) : Bar(args); it(x) { ... }
* Needed to execute superclass constructor with

arguments, also works on instance vars & is
preferred (initialization preferred over assignment)

« Destructor of base class gets called after destructor of
derived class

e SO0 constructors/destructors really extend rather than
override, since that is typically what you want.

— Java is the same



Method overriding, part 1

« |If a derived class defines a method with the same
method name and argument types as one defined Iin
the base class (perhaps because of an ancestor), it
overrides (i.e., replaces) rather than extends.

 If you want to use the base-class code, you specify
the base class when making a method call
(class::method(...)).

— Like super in Java (no such keyword in C++ since
there may be multiple inheritance)

e Warning: the title of this slide is part 1.



Casting and subtyping

 An object of a derived class cannot be cast to an object of
a base class.

— For the same reason a struct T1 { int X, y, z; } cannot
be cast to type struct T2 { int X, y; } (different size)

e A pointer to an object of a derived class can be cast to a
pointer to an object of a base class.

— For the same reason a struct T1 * can be cast to type
struct T2 * (point to a prefix of the memory)

— (Story not so simple with multiple inheritance)

e After such an upcast, field-access works fine (prefix), but
what do method calls mean in the presence of overriding?



An important example

class A{
public:
void m1() { cout << "al";}
virtual void m2() { cout << "a2"; }
I3

class B : public A {
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }
I3
void f() {
A* X = new B();
X->m1();
X->m2();

}



In words...

* A non-virtual method-call is resolved using the
(compile-time) type of the receiver expression.

« A virtual method-call is resolved using the (run-time)
class of the receiver object (what the expression
evaluates to).

— Like Iin Java
— Called “dynamic dispatch”

A method-call is virtual if the method called is marked
virtual or overrides a virtual method.

— So “one virtual” somewhere up the base-class
chain is enough, but it’s probably better style to
repeat it.



More on two method-call rules

* For software-engineering, virtual and non-virtual each
have advantages:

— Non-virtual — can look at the code to know what you're
calling

— Virtual — easier to extend code already written
 The implementations are the same and different:

— Same: Methods just become functions with one extra
argument this (pointer to receiver).

— Different:
* Non-virtual: linker can plug in code pointer

 Virtual: At run-time, look up code pointer via “secret
field” in the object



Destructors revisited

class B : public A{... }

B*b=new B();
A*a=Db:
delete a;

« Will B::~B() get called (before A::~A())?
e Only if A::~A() was declared virtual.

— Rule of thumb: Declare destructors virtual; usually
what you want.

10



Downcasts

Old news:

e C pointer-casts: unchecked; better know what you are
doing

e Java: checked; may raise ClassCastException (check
“secret field”)

New news:

« C++ has “all the above” (several different kinds of casts)

 If you use single-inheritance and know what you are
doing, the C-style casts (same pointer, assume more
about what is pointed to) should work fine for downcasts.

« Worth learning about the differences on your own

11



Pure virtual methods

A C++ “pure virtual” method is like a Java “abstract” method.

Some subclass must override because there is no
definition in base class.

Makes sense with dynamic dispatch.
Unlike Java, no need/way to mark the class specially.
Funny syntax in base class; override as usual:
class C {
virtual tO m(t1,t2,...,tn) = 0;

};

Side-comment: with multiple inheritance and pure-virtual
methods, no need for a separate notion of Java-style
Interfaces.

12



C++ summary

« Lots of new syntax and gotchas, but just a few new
concepts:

— Objects vs. pointers to objects

— Destructors

— virtual vs. non-virtual

— pass-by-reference

— Plus all the stuff we didn’t get to, especially

templates, exceptions, and operator overloading.

— Later (if time): why objects are better than code-
pointers — coding up object-like idioms in C

13



