
CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011

Lecture 2 – Processes, Programs, the Shell
(& emacs)

Where we are

• It’s like we started over using the computer from scratch.
• All we can do is run dinky programs at the command-line.
• But we are learning a model (the system is files,

processes, and users) and a powerful way to control it
(the shell).

• If we get the model right, hopefully we can learn lots of
details quickly.

• Today:
– The rest of the model briefly: Processes and Users
– More programs (ps, chmod, kill, . . .)
– Special shell characters (*, ~, . . .)
– Text editing (particularly emacs)

2

Users

• There is one file-system, one operating system, one or
more CPUs, and multiple users.

• whoami
• ls -l and chmod (permissions), quota (limits)

– Make your homework unreadable by others!
• /etc/passwd (or equivalent) guides the login program:

– Correct username and password
– Home directory
– Which shell to open (pass it the home directory)
– The shell then takes over, with startup scripts (e.g.,

.bash_profile, .bashrc). (ls -a)
• One “superuser” a.k.a. root. (Change passwords, halt

machine, change system directories, add/remove user
accounts, . . .)

3

Programs & the Shell

• A program is a file that can be executed
• Almost all system commands are programs
• The shell is itself a program

– Reads lines you type in & carries them out
– Normally finds the named program and runs it

• A few commands are shell “built-ins” that the
shell executes itself because they change the
state of the shell. Obvious example: cd

– After the named program runs it exits and the shell
reads the next command

– More to this story to come…

4

Processes

• A running program is called a process. An application
(e.g., emacs), may be running as 0, 1, or 57 processes at
any time.

• The shell runs a program by “launching a process” waiting
for it to finish, and giving you your prompt back.
– What you want for ls, but not for emacs.
– &, jobs, fg, bg, kill — job control
– ps, top

• Each process has private memory and I/O streams
• A running shell is just a process that kills itself when

interpreting the exit command.
• (Apologies for aggressive vocabulary, but we’re stuck with

it for now.)

5

Standard I/O streams

• Every process has 3 standard streams: stdin (input),
stdout (output), stderr (error messages)

• Default is keyboard (stdin), terminal window (stdout,
stderr)

• Default behavior is to read from stdin, write normal
output to stdout, write diagnostic output to stderr
– Many programs accept command-line arguments

naming files to read
– If not supplied, just read stdin
– Also ways to redirect stdin, stdout, stderr. Later…

6

That’s most of a running system

• File-system, users, processes
• The operating system manages these
• Processes can do I/O, change files, launch other

processes.
• Other things: Input/Output devices (monitor,

keyboard, network)
• GUIs don’t change any of this, but they do hide it a

bit.
• Now: Back to the shell. . .

7

The shell so far

• So far, our view of the shell is the barest minimum:
– builtins affect subsequent interpretations.
– New builtin: source
– Otherwise, the first “word” is a program run with

the other “words” passed as arguments.
• Programs interpret arguments arbitrarily, but

conventions exist.

8

Complicating the shell

• But you want (and bash has) so much more:
– Filename metacharacters
– Pipes and Redirections (redirecting I/O from and

to files)
– Command-line editing and history access
– Shell and environment variables
– Programming constructs (ifs, loops, arrays,

expressions, …)
• All together, a very powerful feature set, but awfully

inelegant.

9

Filename metacharacters - globbing

• Much happens to a command-line to turn it into a “call
program with arguments” (or “invoke builtin”).

• Certain characters can expand into (potentially) multiple
filenames:
– ~foo – home directory of user foo
– ~ – current user’s home directory (same as ~$user or

‘whoami‘).
– * (by itself) – all files in current directory
– * – match 0 or more filename characters
– ? – match 1 filename character
– [abc], [a-E], [^a], . . .more matching

• Remember, this is done by the shell before the program
sees the resulting arguments

10

Filename metacharacters: why

• Manually, you use them all the time to save typing.
• In scripts, you use them for flexibility. Example: You

do not know what files will be in a directory, but you
can still do: cat * (though a better script would skip
directories).

• But what if it’s not what you want? Use quoting ("*" or
’*’) or escaping (*).

• The rules on what needs escaping where are very
arcane.

• A way to experiment: echo
– echo args. . . copies its arguments to standard

output after expanding metacharacters.

11

History

• The history builtin
• The ! special character

– !!, !n, !abc, . . .
– Can add, substitute, etc.

• This is really for fast manual use; not so useful in
scripts.

12

Aliases

• Idea: Define a new command that expands to something
else (not a full script)

• Shell builtin command:
alias repeat=echo
alias dir=ls
alias hello="echo hello“
alias rm="rm -i" % for cautious users
alias % list existing aliases

• Often put in a file read by source or in a startup file read
automatically.

• Example: CSE VM .bashrc – feel free to change

13

Bash startup files

• Bash reads (sources) specific files when it starts up. Put
commands here that you want to execute every time you
run bash.

• Which file gets read depends on whether bash is starting
as a “login shell” or not
– Login shell: ~/.bash_profile (or others – see bash

documentation)
– Non-login shell: ~/.bashrc (or others if not found)

• Suggestion: Include the following in your .bash_profile file
so the commands in .bashrc will execute regardless of
how the shell starts up

if [-f ~/.bashrc]; then source ~/.bashrc; fi

14

Where we are

Features of the bash “language”:
1. builtins
2. program execution
3. filename expansion (Pocket Guide 22–23)
4. history & aliases

5. command-line editing
6. shell and environment variables
7. programming constructs

But file editing is too useful to put off. . . so a detour to
emacs (which shares some editing commands with bash)

15

What is emacs?

• A programmable, extensible text editor, with lots of
goodies for programmers.

• Not a full-blown IDE. Much “heavier weight” than vi.
• Top-6 commands:

C-g
C-x C-f
C-x C-s, C-x C-w
C-x C-c
C-x b
C-k, C-w, C-y, . . .

• Take the emacs tutorial to get the hang of the basics.
• Everyone should know this at least a little – emacs editing

shortcuts are common in other Linux programs
• Customizable with elisp (starting with your .emacs).

16

Command-line editing

• Lots of control-characters for moving around and
editing the command-line. (Pocket Guide page 28,
emacs-help, and Bash reference manual Sec. 8.4.)

• They make no sense in scripts.
• Gotcha: C-s is a strange one (stops displaying output

until C-q, but input does get executed).
• Good news: many of the control characters have the

same meaning in emacs (and bash has a vi “mode”
too).

17

Summary

As promised, we are flying through this stuff!
• Your computing environment has files, processes, users, a

shell, and programs (including emacs).
• Lots of small programs for files, permissions, manuals, etc.
• The shell has strange rules for interpreting command-lines. So

far:
– Filename expansion
– History expansion

• The shell has lots of ways to customize/automate. So far:
– alias and source
– run (i.e., automatically source) .bash_profile or .bashrc when

shell starts.

Next: I/O Redirection & stream details, Shell Programming

18

