CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011
Lecture 9 — C: Locals, Ivalues and rvalues, more pointers

The story so far...

« The low-level execution model of a process (one address
space)
 Basics of C:
— Language features: functions, pointers, arrays
— ldioms: Array-lengths, strings with \O’ terminators
— Control constructs and int guards
 Today, more features:
— Local declarations
— Storage duration and scope
— Left vs. right expressions; more pointers
— Dangling pointers
— Stack arrays and implicit pointers (confusing)

* Next time: structs; the heap and manual memory management
(and some hacking)

Storage, lifetime, and scope

e At run-time, every variable needs space.
— When is the space allocated and deallocated?
e Every variable has scope.

— Where can the variable be used (unless another
variable shadows it)?

 C has several answers (with inconsistent reuse of the
word static).

« Some answers rarely used but understanding storage,
lifetime, and scope Is important.

 Related: Allocating space is separate from initializing that
space.

— Use uninitialized bits? Hopefully crash but who knows.

— Unlike Java, which zeros out objects, complains about
uninitialized locals.

Storage, lifetime, and scope

Global variables allocated before main, deallocated after main.
Scope is entire program.

— Usually bad style, kind of like public static Java fields.

— But can be OK for truly global data like conversion tables,
physical constants, etc.

Static global variables like global variables but scope is just that
source file, kind of like private static Java fields.

— Related: static functions cannot be called from other files.

Static local variables like global variables (!) but scope is just
that function, rarely used. (We won’t use them)

Local variables (often called automatic) allocated “when
reached” deallocated “after that block”, scope is that block.

— So with recursion, multiple copies of same variable (one per
stack frame/function activation).

— Like local variables in Java.

lvalues vs rvalues

 Inintro courses we are usually fairly sloppy about the
difference between the left side of an assignment and the
right. To “really get” C, it helps to get this straight:

— Law #1. Left-expressions get evaluated to locations
(addresses)

— Law #2: Right-expressions get evaluated to values

— Law #3: Values include numbers and pointers
(addresses)

e The key difference is the “rule” for variables:

— As a left-expression, a variable is a location and we are
done

— As a right-expression, a variable gets evaluated to its
location’s contents, and then we are done.

— Most things do not make sense as left expressions.
e Note: This is true in Java too.

Function arguments

o Storage and scope of arguments is like for local variables.
« But initialized by the caller (“copying” the value)
e SO0 assigning to an argument has no affect on the caller.

e But assigning to the space pointed-to by an argument
might.

void f() { Int g(int x) {
Int 1I=17; X = xX+1;
Int j=g(i); return x+1,;

printf("%d %d",i,j); }
}

Function arguments

o Storage and scope of arguments is like for local variables.
« But initialized by the caller (“copying” the value)
e SO0 assigning to an argument has no affect on the caller.

e But assigning to the space pointed-to by an argument
might.

void f() { int g(int* p) {
inti=17; P =(*p) + 1;
int j=g(&i); return (*p) + 1;

printf("%d %d",i,j); }
}

Function arguments

o Storage and scope of arguments is like for local variables.
« But initialized by the caller (“copying” the value)
e SO0 assigning to an argument has no affect on the caller.

e But assigning to the space pointed-to by an argument
might.

void f() { int g(int* p) {
Int 1=17; Int kK = *p;
int j=g(&i); Int *q = &k;
printf("%d %d",ij): pP=d;

} (*p) = (*q) + 1;

return (*q) + 1;

Pointers to pointers to ...

* Any level of pointer makes sense:
— Example: argv, *argv, **argv
— Same example: argv, argv[0], argv[0][O]

* But &(&p) makes no sense (&p Is not a left-expression,
the value IS an address but the value is in no-particular-

place).
This makes sense (well, at least it's legal C):

void f(int x) {
INt*p = &x;
INt**q = &p;
.. can use x, p, *p, g, *q, **q, ...

}
Note: When playing, you can print pointers with %p (just
numbers in hexadecimal)

Dangling pointers

int* f(int x) {

Int *p;
If(x) {
Inty = 3;
p =&y, /* ok */

} I* ok, but p now dangling */
[*y = 4 does not compile */
*n=7; [*could CRASH but probably not */
return p; /* uh-oh, but no crash yet */
}
void g(int *p) { *p = 123; }
void h() {
g(f(7)); /*HOPEFULLY YOU CRASH (but maybe not) */

}

10

Arrays and Pointers

o |fphastype T*ortype T[]:
— *p hastype T

— If i 1s an int, p+i refers to the location of an item of type
T that is | items past p (not +i storage locations unless
each item of type T takes up exactly 1 unit of storage)

— p[i] is defined to mean *(p+i)

— If p is used in an expression (including as a function
argument) it has type T*

e Even ifitis declared as having type T[]

* One consequence: array arguments are always
“passed by reference” (as a pointer), not “by value”
(which would mean copying the entire array value)

11

Arrays revisited

« “Implicit array promotion”: a variable of type T[| becomes a variable
of type T* in an expression

void f1(int* p) { *p = 5; }

int* £2() {
Int x[3]; /*xon stack */
X[0] = 5;
[* (&X)[0] = 5; wrong */
*X = 5;
*(x+0) = 5;
f1(x);
[* t1(&X); wrong — watch types! */
[* x = &x[2]; wrong — x isn’t really a pointer! */
int *p = &x[2];
return x; /* wrong — dangling pointer — but type correct */

}

12

