CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2011
Lecture 21 — Function Pointers and Objects in C




Function pointers

« “Pointers to code” are almost as useful as “pointers to
data”. (But the syntax is painful in C.)

e (Somewhat silly) example:

void app_arr(int len, int * arr, int (*f)(int)) {

for(int k = 0; k < len; k++)

arr[k] = (*f)(arr[k]);

}
Int twoX(int 1) { return 2*i; }
Int sgr(inti) {return i*i; }
void twoXarr(int len, int* arr) {app_arr(len,arr,&twoX);}
void sgr_arr(int len, int* arr) {app_arr(len,arr,&sqr); }



C function-pointer syntax

e C syntax: painful and confusing. Rough idea: The compiler
“*knows” what is code and what is a pointer to code, so you
can write less than we did on the last slide:

arr[k] = (*f)(arr[K]);

= arr[k] = f(arr[k]);
app_arr(len,arr,&twoX);

= app_arr(len,arr,twoX);

* Fortypes, let’s pretend you always have to write the
“pointer to code” part (i.e., tO (*)(t1,t2,...,tn)) and for
declarations the variable or field name goes after the *.

e Sigh.



What Iis an object?

First Approximation

e An object consists of data and methods
— Provides the correct (conceptual) model
— Easy to explain

e But...

— Doesn’t make engineering sense — we don’t want
to replicate the (same) method bodies (function
code) in every object



What Is an object?

Second Approximation
e An object consists of data and pointers to methods

* The compiler adds an additional, implicit “this” parameter
to every method holding a reference to the receiver object

— Gives the method a way to refer to the instance
variables of the correct receiver object

— Actual method (function) code has no other connection
to any particular object

« Avoids code duplication

But. ..

 Still wastes space for pointers to every class function in
every object, particularly if there is relatively little instance
data, or if the class has a large number of methods



What Is an object?

How it’s really done

 There is a single “virtual function” table (vtable) for each
class containing pointers to the methods of that class.

— This Is static, constant class data — does not change
during execution; initialized at load/startup time

e An object consists of data and a pointer to its class vtable
 Method calls are indirect through the vtable

« Each method still has an implicit this parameter that refers
to the receiving object

« Avoids code duplication
* Avoids method pointer duplication
e Costs an indirect pointer lookup during each function call



Inheritance and overriding

Basic ideas:

We have a vtable for every class and subclass

The vtable for a subclass points to the correct methods —
either ones belonging to the base class that are inherited,
or ones belonging to the subclass (added or overriding)

Key idea: The initial part of the vtable for a subclass points
to the methods that are inherited or overridden from the
base class in exactly the same order they appear in the
base class vtable

— So compiled code can find the correct method at the
same offset in the vtable whether it is overridden or not

Use casts as needed to adjust references up and down
the inheritance chain



