
CSE 374

Programming Concepts & Tools

Hal Perkins

Winter 2012

Lecture 8 – C: Miscellanea

Control, Declarations, Preprocessor, printf/scanf

The story so far…

• The low-level execution model of a process (one address
space)

• Basics of C:

– Language features: functions, pointers, arrays

– Idioms: Array-lengths, strings as arrays with ’\0’ terminators

• Today – a collection of core C idioms/ideas:

– Control Constructs, ints as booleans

– Declarations & Definitions

– Source file structure

– Two important “sublanguages” used a lot in C

• The preprocessor: runs even before the compiler
– Simple #include and #define for now; more later

• printf/scanf: formatted I/O
– Really just a library though

• Next time: lvalues, rvalues, arrays & pointers; then structs &
memory allocation

2

Control constructs

• while, if, for, break, continue, switch: much like Java

• Key difference: No built-in boolean type; use ints (or
pointers)

– Anything but 0 (or NULL) is “true”

– 0 and NULL are “false”

– C99 did add a bool library but use is still sporadic/
optional

• goto much maligned, but makes sense for some
tasks (more general than Java’s labeled break)

• Gotcha: switch cases fall-through unless there is an
explicit transfer (typically a break), just like Java

3

Declarations and Definitions (1)

• C makes a careful distinction between these two

• Declaration: introduces a name and describes its

properties (type, # parameters, etc), but does not

create it

– ex. Function prototype: int twice(int x);

– also ok (not as good style?): int twice(int);

• Definition: the actual thing itself

– ex. Function implementation:

 int twice(int x) { return 2*x; }

4

Declarations and Definitions (2)

• An item may be declared as many times as needed

– although normally at most once per scope or file

(i.e., can’t declare the same name twice in a

scope)

– Declarations of shared things are often #included

(read) from header files (e.g., stdio.h)

• An item must be defined exactly once

– e,g., there must be a single definition of each

function in only one file no matter how many files

contain a definition of it (or #include a definition) or

actually use it

5

Forward References

• No forward references:

– A function must be defined or declared in a source

file before it is used. (Lying: “implicit declaration”

warnings, return type assumed int, ...)

– Linker error if something is used but not defined in

some file somewhere (including main)

• Use -c to not link yet (more later)

– To write mutually recursive functions, you just

need a (forward) declaration

6

Some (more) glitches

• Declarations must precede statements in a “block”

– But any statement can be a block, so use { … } if
you need to

– Or use --std=c99 gcc compiler option

• Array variables in code must have a constant size

– So the compiler knows how much space to
allocate

– (C99 has an extension to relax this – rarely used)

– Arrays whose size depends on runtime
information are allocated on the heap (next time)

– Large arrays are best allocated on the heap also,
even if constant size, although not required

7

More gotchas

• Declarations in C are funky:

– You can put multiple declarations on one line, e.g.,

int x, y; or int x=0, y; or int x, y=0;, or ...

– But int *x, y; means int *x; int y; – you usually mean

int *x, *y;

– Common style rule: one declaration per line (clarity,

safety, easier to place comments)

• Variables holding arrays have super-confusing (but

convenient) rules…

– Array types in function arguments are pointers(!)

– Referring to an array doesn’t mean what you think (!)

• “implicit array promotion” (later)

8

The preprocessor

• Rewrites your .c file before the compiler gets at the

code

– Lines starting with # tell it what to do

• Can do crazy things (please don’t); uncrazy things

are:

1. Including contents of header files (now)

2.Defining constants (now) and parameterized

macros (textual-replacements) (later)

3.Conditional compilation (later)

9

File inclusion

#include <foo.h>

• Search for file foo.h in “system include directories” (on
Fedora /usr/include and subdirs) for foo.h and include its
preprocessed contents (recursion!) at this place

– Typically lots of nested includes, so result is a mess
nobody looks at (use gcc –E if you want a look!)

– Idea is simple: e.g., declaration for fgets is in stdio.h
(use man for what file to include)

• #include "foo.h" the same but first look in current directory

– How you break your program into smaller files and still
make calls to functions other files

• gcc -I dir1 -I dir2 ... look in these directories for header
files first (keeps paths out of your code files) – we
probably won’t need to use this

10

Simple macros & symbolic constants

#define M_PI 3.14 // capitals a convention to avoid problems

#define DEBUG_LEVEL 1

#define NULL 0 // already in standard library

• Replace all matching tokens in the rest of the file.

– Knows where “words” start and end (unlike sed)

– Has no notion of scope (unlike C compiler)

– (Rare: can shadow with another #define or use #undef)

#define foo 17

void f() {

 int food = foo; // becomes int food = 17; (ok)

 int foo = 9+foo+foo; // becomes int 17 = 9+17+17; (nonsense)

}

11

Typical file layout

• Not a formal rule, but good conventional style

// includes for functions & types defined elsewhere

#include <stdio.h>

#include “localstuff.h“

// symbolic constants
#define MAGIC 42

// global variables (if any)

static int days_per_month[] = { 31, 28, 31, 30, …};

// function prototypes (to handle “declare before use”)

void some_later_function(char, int);

// function definitions

void do_this() { … }

char * return_that(char s[], int n) { … }

int main(int argc, char ** argv) { … }

12

printf and scanf

• “Just” two library functions in the standard library

– Prototypes (declarations) in <stdio.h>

• Example: printf("%s: %d %g\n", p, y+9, 3.0)

• They can take any number of arguments

– You can define functions like this too, but it is

rarely useful, arguments are usually not checked

and writing the function definition is a pain

• Writing these not covered in this course

• The “f” in printf is for “format” – crazy characters in

the format string control formatting

13

The rules

• To avoid HYCSBWK:

– Number of arguments better match number of %

– Corresponding arguments better have the right
types (%d, int; %f, float; %e, float (prints scientific);
%s, \0-terminated char*; … (look them up))

• For scanf, arguments must be pointers to the right
type of thing (reads input and assigns to the
variables)

– So int* for %d, but still char* for %s (not char**)

int n; char *s;
…

scanf(“%d %s”, &n, s);

14

More funny characters

• Between the % and the letter (e.g., d) can be other

things that control formatting (look them up; we all

do)

– Padding (width) %12d %012d

– Precision . . .

– Left/right justification . . .

• Know what is possible; know that other people’s code

may look funny

15

More on scanf

• Check for errors (scanf returns number of % sucessfully
matched)

– maybe the input does not match the text

– maybe some “number” in the input does not parse as a
number

• Always bound your strings

– Or some external data could lead to arbitrary behavior

• (common source of viruses; input a long string
containing evil code)

– Remember there must be room for the \0

– %s reads up to the next whitespace

Example: scanf("%d:%d:%d", &hour, &minutes, &seconds);

Example: scanf("%20s", buf)
 (better have room for 20 characters)

16

