
CSE 374 Midterm Exam, 2/9/2015

Name: ___

Write your name in the space provided above. Without looking at the test contents, write
your initials on the top right corner of every sheet of paper. The last page is a reference.

Please wait to turn the page until everyone is told to begin.

While you are waiting, please read the following information:

There are 6 questions on 20 pages worth a total of 100 points. Please budget your time to get to
all the questions. Keep answers brief and to the point.

Some question pages may be detached for your convenience. A stapler is available at the
instructor podium if your entire exam falls apart.

The exam is closed book, closed notes, closed electronics, closed Internet, closed neighbor,
closed telepathy, etc., with the exception of the references at the end of the packet.

Many of the questions have short solutions even if the question is somewhat long. Don’t be
alarmed.

If you don’t remember the exact syntax of some command or the format of a command’s output,
make the best attempt you can. We will make allowances when grading. Write legibly.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Page � of �1 20

CSE 374 Midterm Exam, 2/9/2015

Score: ______________ / 100

1. ___________ / 10

2. ___________ / 16

3. ___________ / 18

4. ___________ / 18

5. ___________ / 18

6. ___________ / 20

Page � of �2 20

CSE 374 Midterm Exam, 2/9/2015

Question 1. (10 points) (Shell commands) You’ve run a series of commands to explore your
current directory. Note that ls -F just lists directories with a slash (/) at the end to distinguish
them from regular files.

bash-­‐$	
 pwd	

/homes/admin	

bash-­‐$	
 ls	
 -­‐F	

tools/	
 	
 	
 	
 	
 	
 	
 	
 	
 buildings.txt	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 maps/	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 buildings/	

bash-­‐$	
 ls	
 -­‐F	
 maps	

uw_south.jpg	
 	
 	
 	
 	
 	
 	
 	
 	
 uw_north.jpg	
 	
 	
 	
 	
 	
 	
 	
 uw_west.jpg	
 	
 	
 	
 	
 	
 	
 	
 uw_east.jpg	
 	
 	
 	
 	
 	
 	
 	

fields.jpg	
 	
 	
 	
 	
 	
 	
 ave.jpg	

bash-­‐$	
 cd	
 tools	

bash-­‐$	
 ls	
 -­‐F	

courses/	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 employees/	

bash-­‐$	
 ls	
 -­‐F	
 courses	

create_course.c	
 	
 	
 	
 	
 	
 	
 	
 create_course.h	
 	
 	
 	
 	
 	
 	
 	
 enroll_student.c	
 	
 	
 	
 	
 	
 	
 	

enroll_student.h	

bash-­‐$	
 ls	
 -­‐F	
 employees	

create_department.c	
 	
 	
 	
 	
 	
 	
 create_department.h	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hire_employee.c	
 	
 	
 	
 	
 	
 	
 	
 	
 	

hire_employee.h	

Solve each problem individually. The starting state of the shell is always the same.

a) You wish to refactor your programs so that header files are separate from source files. From
the current shell state, write additional commands to create a new directory inside the tools/
directory called headers. Move all .h files under the tools directory into the headers/	
 directory.
(at the end, headers/	
 should only contain regular files not directories)

b) Each line in buildings.txt is the name of a building. You wish to start a new directory for
each building. From the current shell state (i.e, ignore part (a) commands), write additional
commands to create a new directory under buildings/ for each line in buildings.txt.

Page � of �3 20

CSE 374 Midterm Exam, 2/9/2015

c) You want a list of all UW map files. From the current shell state (i.e., ignore part (a,b)
commands), write additional commands to create a new file uw.txt under maps/ where each line
is the filename in maps/ that starts with uw_.

uw_south.jpg	

uw_north.jpg	

uw_west.jpg	

uw_east.jpg	

Page � of �4 20

CSE 374 Midterm Exam, 2/9/2015

Question 2. (16 points) (regular expressions) Give regular expressions that could be used with
grep or egrep that would match the lines described. (You do not need to indicate grep or
egrep, as long as your answer works with one or the other).

a) Lines containing a valid office number. A valid office number begins with CSE or EE,
followed by an optional single space or underscore, followed by a three digit number. The
first number is always between 1 and 6. Examples, CSE 100, CSE699, EE201, EE_222

b) Lines containing a pair of letters that occur consecutively at least 3 times. Examples,
insinuating, enlightenment, possessionlessness

c) “i before e except after c”. Lines containing ie (except for cie) or cei. For example, it should
match receive, sieve, thief, BUT NOT match currencies.

d) Lines containing an odd number of characters.

Page � of �5 20

CSE 374 Midterm Exam, 2/9/2015

Question 3. (18 points) (Shell scripting)

a) Consider the command that prints to stdout running processes:

bash-­‐$	
 ps	
 aux	

USER	
 	
 	
 	
 PID	
 	
 %CPU	
 %MEM	
 VSZ	
 	
 	
 	
 	
 	
 RSS	
 	
 	
 TT	
 STAT	
 STARTED	
 	
 TIME	
 	
 	
 	
 COMMAND	

alice	
 	
 	
 	
 12277	
 	
 	
 0.0	
 	
 0.1	
 	
 2472836	
 6896	
 	
 	
 ??	
 	
 S	
 	
 	
 	
 Sat07PM	
 	
 	
 0:44.05	
 /usr/bin/top	

alice	
 	
 	
 	
 13275	
 	
 	
 0.0	
 	
 0.0	
 	
 2497564	
 3564	
 	
 	
 ??	
 	
 S	
 	
 	
 	
 Sat07PM	
 	
 	
 0:07.55	
 /usr/bin/display	

root	
 	
 	
 	
 	
 274	
 	
 	
 	
 	
 0.0	
 	
 0.1	
 	
 2497520	
 10072	
 	
 ??	
 	
 Ss	
 	
 	
 Sat07PM	
 	
 	
 0:14.29	
 /usr/sbin/sshd	

bob	
 	
 	
 	
 	
 	
 10273	
 	
 	
 0.0	
 	
 0.1	
 	
 2490020	
 	
 3321	
 ??	
 	
 S	
 	
 	
 	
 Sat07PM	
 	
 	
 0:03.11	
 /usr/bin/find	

…	

First column: username (who ran the program)
Second column: process id
Last column: the command that started the process

The whitespace between each column consists of one or more single spaces.

Give a one-line command (that includes ps	
 aux) that prints to stdout the process ids of alice’s
processes. For example, given the above output of ps aux, your command would print out:

12277	

13275	

(HINT: grep and/or sed may be useful)

b) Write a shell script stoplist that kills all process ids provided in files. The command

stoplist	
 f1	
 f2	
 …	
 fn	

should kill process ids listed in each file. The format of the input files is one process id per line,
with multiple lines.

To kill a process, use the kill command as follows:

kill	
 -­‐9	
 pid	

• The -9 argument is just required to forcibly stop the process.
• If pid is a valid process, then kill exits with a return code of 0 and prints nothing
• If pid was an invalid process, then kill exits with return code of 1 and prints an error

message to stderr

Your script needs to follow this specification:
• print nothing to stdout
• print an informative error message to stderr for each invalid process id

Page � of �6 20

CSE 374 Midterm Exam, 2/9/2015

• print an informative error message to stderr for each file argument that is not an existing
regular file

You do not need to worry about permissions on files or processes.

Page � of �7 20

CSE 374 Midterm Exam, 2/9/2015

Question 4. (18 points) (Shell scripts for text processing) Suppose that our shell’s current
working directory contains only directories, which are album names. For example:

bash-­‐$	
 ls	
 -­‐F	

Abbey	
 Road/	

Another	
 Brick	
 In	
 The	
 Wall/	

The	
 Dark	
 Side	
 of	
 The	
 Moon/	

The	
 Doors/	

Please	
 Please	
 Me/	

Thriller/	

Are	
 You	
 Experienced/	

…	

Sgt	
 Peppers	
 Lonely	
 Hearts	
 Club	
 Band/	

Each directory contains a number of text files containing lyrics. They are numbered by track. For
example:

bash-­‐$	
 ls	
 “Abbey	
 Road”	

01-­‐Here	
 Comes	
 the	
 Sun.txt	

02-­‐Because.txt	

...	

11-­‐Her	
 Majesty.txt	

Solve each of the following problems individually (i.e. each problem starts with the same initial
directories/files).

a) You decide that you don't want anyone else to see your music collection. Give a one-line
command to turn off the group/others 'rwx' permissions for all albums and songs.

b) In one line, copy ALL of the song lyrics—substituting all occurrences of the word ‘the’ to the
word ‘a’—to a file called allLyrics.txt that is in your home directory.

Page � of �8 20

CSE 374 Midterm Exam, 2/9/2015

c) Write a shell script that creates a file songs.txt in each album directory, which lists only the
song names. For example, considering the example album, the script would create

“Abbey	
 Road/songs.txt”	
 	

containing the contents

Here	
 Comes	
 the	
 Sun	

Because	

...	

Her	
 Majesty	

You may assume song names only consist of alphanumeric characters and spaces.

Page � of �9 20

CSE 374 Midterm Exam, 2/9/2015

d) Write a script that prints to stdout the following: the album name, the number of words in each
song, and the total number of words in the album. There is a blank line before the next album.
Example of output shown (these are made-up word counts):

Abbey	
 Road	

100	

222	

201	

111	

425	

1059	

Thriller	

300	

201	

233	

344	

1078	

Page � of �10 20

CSE 374 Midterm Exam, 2/9/2015

Page � of �11 20

CSE 374 Midterm Exam, 2/9/2015

Question 5. (18 points) (Understanding C programs) Consider the following C program:

#include	
 <stdio.h>	

#include	
 <string.h>	

void	
 mystery(int*	
 a,	
 int*	
 b,	
 int*	
 c)	
 {	

	
 	
 int*	
 t	
 =	
 a;	

	
 	
 a	
 =	
 b;	

	
 	
 b	
 =	
 t;	

	
 	
 *c	
 =	
 *a	
 -­‐	
 *b;	

}	

int	
 main()	
 {	

	
 	
 char	
 foo[5]	
 =	
 "Hey";	

	
 	
 char	
 bar[3]	
 =	
 "Yo";	

	
 	
 int	
 u	
 =	
 strlen(foo);	

	
 	
 int	
 x	
 =	
 0;	

	
 	
 int*	
 y	
 =	
 &x;	

	
 	
 int*	
 z;	

	
 	
 int	
 p	
 =	
 12;	

	
 	
 strcpy(foo,	
 bar);	

	
 	
 printf(“%s	
 %s\n”,	
 foo,	
 bar);	

	
 	
 x	
 =	
 1;	

	
 	
 z	
 =	
 &p;	

	
 	
 *y	
 =	
 *y	
 +	
 u;	

	
 	
 printf("XP:	
 %d	
 %d\n",	
 x,	
 p);	

	
 	
 printf("*:	
 %d	
 %d\n",	
 *y,	
 *z);	

	
 	
 mystery(z,	
 y,	
 &p);	

	
 	
 printf("XP:	
 %d	
 %d\n",	
 x,	
 p);	

	
 	
 printf("*:	
 %d	
 %d\n",	
 *y,	
 *z);	

	
 	
 z	
 =	
 y;	

	
 	
 mystery(z,	
 y,	
 &p);	

	
 	
 printf("XP:	
 %d	
 %d\n",	
 x,	
 p);	

	
 	
 printf("*:	
 %d	
 %d\n",	
 *y,	
 *z);	

}	

Page � of �12 20

CSE 374 Midterm Exam, 2/9/2015

What output does this program produce when it is executed? (It is a valid C program and
executes successfully). We suggest drawing diagrams showing variables and pointers to help
you answer the question and help us award partial credit if needed. In your diagrams, if values
change over time, cross out the old value and write the new value next to it rather than erasing
the old value. (Hopefully, this will make it easier for us to follow your thought process).

Here is standard library documentation for your reference.

• int	
 strlen	
 (
 char*	
 str	
)	
 	
 	

• returns the length of the string

• void	
 strcpy(
 char*	
 destination,	
 char*	
 source	
)	

• copy the string pointed to by source into the array pointed to by destination, including the

null terminator.

Page � of �13 20

CSE 374 Midterm Exam, 2/9/2015

Question 6. (20 points) (C Programming)

A strange electromagnetic pulse caused your office’s computers to malfunction. There is one old
vacuum-tube computer that still works and it has a C compiler! Since there is one computer to
share, everyone is told to save all their needed calculations to a file that will be processed later.
It is your job to write a program that will process such a file and print out the answers.

Each line of a file contains a left operand, followed by a single space, followed by + - * or /,
followed by a single space, followed by a right operand.

 For example, consider the file mylog.txt.

bash-­‐$	
 cat	
 mylog.txt	

1	
 +	
 1	

222	
 *	
 2	
 	

13	
 /	
 1	

4	
 /	
 0	

144	
 -­‐	
 10	

55	
 +	
 12	

Assume the following about operands:
• between 1 and 3 digits long
• positive integer or 0

Here is what the program would do. Notice that if a line includes a divide-by-zero, “ERROR” is
printed instead of a numeric result.

bash-­‐$	
 ./calculate	
 mylog.txt	

2	

444	

13	

ERROR	

134	

67	

A coworker already has the code to read a file line-by-line. Your job is to implement the
calculate_line function, which takes in one line of input, parses the input, does the
calculation, and prints the required result line to stdout.

void	
 calculate_line(char*	
 line);	

You should write auxiliary functions if and when they are appropriate. You don’t need to write
any #include’s; assume they are included for you.

Page � of �14 20

CSE 374 Midterm Exam, 2/9/2015

Some (possibly useful) functions. There are multiple solutions. None should require all of these
functions.
• char*	
 strncpy(dest,	
 src,	
 max_length)	

• copy up to max_length characters from src to dest
• int	
 strnlen(s,	
 max_length)	

• return the length of the string. If the string is longer than max_length, then max_length is
returned.

• int	
 ctoi(char	
 c)	

• interpret the character c as an integer between 0 and 9. For example, ctoi(‘0’) returns 0,

ctoi(‘1’) returns 1, …
• int	
 stoi(char*	
 s)	

• interpret the string s as an integer. For example, stoi(“125”) returns 125.
• int	
 pow(int	
 base,	
 int	
 exponent)	

• return baseexponent. For example, pow(3, 2) returns 9.
• int	
 sscanf(
 char*	
 input,	
 char*	
 format,	
 …	
)	

• Reads data from input and stores them according to the parameter format into the
locations pointed by the additional arguments (…). This is like scanf except it reads from a
string instead of from stdin. Returns the number of items in the additional arguments that
were successfully filled.

Page � of �15 20

CSE 374 Midterm Exam, 2/9/2015

Page � of �16 20

CSE 374 Midterm Exam, 2/9/2015

Page � of �17 20

CSE 374 Midterm Exam, 2/9/2015

[this page intentionally blank]

Page � of �18 20

CSE 374 Midterm Exam, 2/9/2015

Reference. This is an incomplete list.

• mkdir [options] directory_name …
• create a new directory for each argument. Exits 0 on success, and >0 if error occurs
• options

• -p create intermediate directories as required; also, no error reported if a directory
already exists

• rm [options] file …
• remove the files
• options

• -r recursively remove the file hierarchy rooted at the file
• -f if a file doesn’t exist, don’t display an error message

• wc [options] [file …]
• line, word, character count
• example: (note the leading spaces)

wc	
 foo.txt	
 bar.txt	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 5	
 	
 	
 	
 	
 	
 	
 foo.txt	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 6	
 	
 	
 	
 	
 	
 	
 bar.txt	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 11	
 	
 	
 	
 	
 totals	

• only prints the totals row when there are 2 or more files
• options

• -c print only characters and filename
• -l print only lines and filename
• -w print only words and filename

• for (shell)
• example:

for	
 i	
 in	
 x1	
 x2	
 x3	
 x4;	

do	

	
 	
 	
 	
 …	

done	

• if tests (shell)
• ! expression true if expression is false

• -d file true if file exists and is a directory
• -e file true if file exists, regardless of type
• -f file true if file exists, and is a regular file
• -s file true if file exists and has a size greater than 0

• -n string true if length of string is nonzero
• -z string true if length of string is zero
• string true if string is not the empty string

• s1 = s2 true if the strings s1 and s2 are identical.

Page � of �19 20

CSE 374 Midterm Exam, 2/9/2015

• s1 != s2 true if the strings s1 and s2 are not identical.

• n1 -eq n2 true if integer n1 is equal to integer n2. Similar for -ne -gt -ge -lt -le

• grep [options] pattern [file …]
• options

• -n line numbers
• -o print only the matching part of the line (default is print whole matching line)

• sed [options] command [file …]
• options

• -e command append the editing command to the list of commands
• -n

• By default, each line of input is echoed to the standard output after all of the commands
have been applied to it. The -n option suppresses this behavior.

• modifiers to regular expression: s/…/…/[modifier]
• p print matched lines
• g find multiple matches per line (default is first match)

• some regular expressions
• a+ one or more
• [abc$12] one character in the list
• [^efg*45] one character not in the list
• . any single character
• ^ beginning of line
• $ end of line
• (hello) group
• \1 \2 \3 backreferences

• shell substitutions
• `cmd` substitute with the stdout from running cmd
• $* or $@ all the arguments without quotes around them
• “$*” all the arguments are treated as one quoted string
• “$@” all the arguments are treated as individual quoted strings
• $# number of arguments; it is 0 for zero arguments

Page � of �20 20

