
CSE 374
Programming Concepts & Tools

Hal Perkins
Fall 2015

Lecture 15 – Testing

Where we are

•  Some very basic “software engineering” topics in the
midst of tools
–  Today: testing (how, why, some terms)
–  Later: (partial) specification

 “Test your software or your users will”
Hunt & Thomas

The Pragmatic Programmer

2

Software design

“There are two ways of constructing a software
design:
•  One way is to make it so simple that there

are obviously no deficiencies, and
•  the other way is to make it so complicated

that there are no obvious deficiencies.
The first method is far more difficult.”

 Sir C. A. R. Hoare

3

Debugging

“Debugging is twice as hard as writing
the code in the first place. Therefore, if
you write the code as cleverly as
possible, you are, by definition, not smart
enough to debug it.”

 Brian Kernighan

4

Testing

 “Program testing can be a very
effective way to show the presence
of bugs, but is hopelessly inadequate
for showing their absence.”

Edsger Dijkstra
1972 Turing Award Lecture

http://userweb.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

5

Fixing bugs…

•  Use languages and tools that make errors impossible
when you can
–  Java eliminates a large class of memory bugs

•  Don’t introduce defects
–  Think, design, analyze – don’t write the bugs in the

first place!
•  Make defects visible

–  Assertions, exceptions (if you have them)
–  Rigorous testing

•  Debugging – last resort

6

Testing 1, 2, 3

•  Role of testing and its plusses/minuses
•  Unit testing or “testing in the small”
•  Stubs, or “cutting off the rest of the world” (which

might not exist yet)

7

A little theory

•  Testing is very limited and difficult:
–  Small number of inputs
–  Small number of calling contexts, environments,

compilers, …
–  Small amount of observable output
–  Requires more things to get right, e.g., test code

•  Standard coverage metrics (statement, branch, path)
are useful but only emphasize how limited it is.

8

How much is enough?

•  This code is supposed to compute something resembling
C’s “a or b” function. How do we test it? How many tests
do we need? What kinds of tests should they be?

int f(int a, int b) {
 int ans = 0;
 if(a)
 ans += a;
 if(b)
 ans += b;
 return ans;

}

9

Three coverage metrics

int f(int a, int b) {
 int ans = 0;
 if(a)
 ans += a;
 if(b)
 ans += b;
 return ans;

}
•  Statement coverage: f(1,1) sufficient
•  Branch coverage: f(1,1) and f(0,0) sufficient
•  Path coverage: f(0,0), f(1,0), f(0,1), f(1,1) sufficient
•  But even the example path-coverage test suite suggests f

is a correct “or” function for C; it is not.

10

Colored boxes

“black box” vs “white box”
•  black-box: test a unit without looking at its

implementation
–  Pros: don’t make same mistakes, think in terms of

interface, independent validation
–  Basic example: remember to try negative numbers

•  white-box: test a unit while looking at its
implementation (sometimes called “clear box”)
–  Pros: can be more efficient, can find the

implementation’s corner cases
–  Basic example: try loop boundaries, “special

constants”, max values, empty/full data structure…

11

Stubs

•  Unit testing (a small group of functions) vs. integration
testing (combining units) vs. system testing (the “whole
thing” whatever that means)

•  How to test units (“code under test”) when the other code:
–  may not exist
–  may be buggy
–  may be large and slow

•  Answer: You provide a “fake implementation” of the other
code that “works well enough for the tests”
–  Fake implementation is as small as possible, so the

functions are often called “stubs”
•  Tools like JUnit et seq. exist to support unit testing — take

advantage of them when they make sense

12

Stubbing techniques

It’s an art, not a science. Some useful techniques:
•  Instead of computing a function, use a small table of

pre-encoded answers
•  Return wrong answers that won’t mess up what

you’re testing
•  Don’t do things (e.g., print) that won’t be missed
•  Use a slower algorithm
•  Use an implementation of fixed size (an array instead

of a list?)
•  ... other ideas?

13

Eat your vegetables

•  Make tests:
–  early
–  easy to run (e.g., a make target with an automatic diff

against sample output)
–  that test interesting and well-understood properties
–  that are as well-written and documented as other code

•  Write the tests first! (seems odd until you do it)
•  Write much more code than the “assignment requires you

turn-in”
•  Manually or automatically compute test-inputs and right-

answers?
•  Write regression tests and run on each version to ensure

bugs do not creep in for stuff that “used to work”.

14

Debugging

•  When a test uncovers a problem, need to find the
cause and fix it

•  Often more art then science, but don’t thrash
randomly

•  Treat debugging as a scientific experiment:
–  Hypothesis: the problem is because …
–  Experiment: design tests to verify hypothesis
–  Not verified? Start over with a new hypothesis
–  Verified? Bug found! Fix it, test it, and add the test

that demonstrated the bug to your collection

15

Testing – of what

•  Summary: Testing has some concepts worth knowing
and using
–  Coverage (statement, branch, path)
–  White-box vs. black-box
–  Stubbing

•  But we made a big assumption, that we know what
the code is supposed to do!

•  Specification is a topic we need to talk more about…

… and we will.

16

