
CSE 374
Programming Concepts & Tools

Hal Perkins
Winter 2017

Lecture 13 – C: The Rest of the Preprocessor

UW CSE 374 Winter 2017 1

Administrivia

•  Midterm should be graded this weekend and returned
next Monday (or, at least, that’s the plan)

•  HW5 due Tuesday Thursday night
–  Questions? Need to look at demo again?

•  HW6 – multiple parts with a partner
–  Pick a partner by early next week. Partner info
must be submitted online by 11pm Wednesday
(details on how/where in a couple of days)

2 UW CSE 374 Winter 2017

The story so far…

•  We’ve looked at the basics of the preprocessor
–  #include to access declarations in header files
–  #define for symbolic constants

•  Now:
–  More details; where it fits
–  Multiple source and header files
–  A bit about macros (somewhat useful, somewhat a

warning)

3 UW CSE 374 Winter 2017

The compilation picture

gcc does all this for you (reminder)
•  -E to only preprocess; result on stdout (rare)
•  -c to stop with .o (common for individual files in larger

program)

4 UW CSE 374 Winter 2017

More about multiple files

Typical usage:
•  Preprocessor #include to read file containing

declarations describing code
•  Linker combines your .o files and other code

–  By default, the “standard C library”
–  Other .o and .a files
–  Whole lecture on linking and libraries later…

5 UW CSE 374 Winter 2017

The preprocessor

•  Rewrites your .c file before the compiler gets at the code.
–  Lines starting with # tell it what to do

•  Can do crazy things (please don’t); uncrazy things are:
1. Including contents of header files
2. Defining constants and parameterized macros

•  Token-based, but basically textual replacement
•  Easy to misdefine and misuse

3. Conditional compilation
•  Include/exclude part of a file
•  Example uses: code for debugging, code for

particular computers (handling portability issues),
“the trick” for including header files only once

6 UW CSE 374 Winter 2017

File inclusion (review)

#include <hdr.h>
•  Search for file hdr.h in “standard include directories” and

include its contents in this place
–  Typically lots of nested includes, result not fit for

human consumption
–  Idea is simple: declaration of standard library routines

are in headers; allows correct use after declaration
#include "hdr.h"

–  Same, but first look in current directory
–  How to break your program into smaller files that can

call routines in other files
•  gcc -I option: look first in specified directories for headers

(keep paths out of your code files) (not needed for 374)

7 UW CSE 374 Winter 2017

Header file conventions

Conventions: always follow these when writing a header file
1.  Give included files names ending in .h; only include these

header files. Never #include a .c source file
2.  Do not put functions definitions in a header file; only struct

definitions, prototypes (declarations), and other includes
3.  Put all your #includes at the beginning of a file
4.  For header file foo.h start it with:

#ifndef FOO_H
#define FOO_H

and end it with:
#endif

(We will learn why very soon)

8 UW CSE 374 Winter 2017

Simple macros (review)

Symbolic constants and other text
#define NOT_PI 22/7
#define VERSION 3.14
#define FEET_PER_MILE 5280
#define MAX_LINE_SIZE 5000

•  Replaces all matching tokens in rest of file
–  Knows where “words” start and end (unlike sed)
–  Has no notion of scope (unlike C compiler)
–  (Rare: can shadow with another #define or use

#undef to remove)

9 UW CSE 374 Winter 2017

Macros with parameters

#define TWICE_AWFUL(x) x*2
#define TWICE_BAD(x) ((x)+(x))
#define TWICE_OK(x) ((x)*2)
double twice(double x) { return x+x; } // best (editorial opinion)

•  Replace all matching “calls” with “body” but with text of

arguments where the parameters are (just string substitution)
•  Gotchas (understand why!):

y=3; z=4; w=TWICE_AWFUL(y+z);
y=7; z=TWICE_BAD(++y); z=TWICE_BAD(y++);

•  Common misperception: Macros avoid performance overhead of
a function call (maybe true in 1975, not now)

•  Macros can be more flexible though (TWICE_OK works on ints
and doubles without conversions (which could round))

UW CSE 374 Winter 2017 10

Justifiable uses

Parameterized macros are generally to be avoided (use
functions), but there are things functions cannot do:

#define NEW_T(t, howmany) ((t*)malloc((howmany)*sizeof(t))

#define PRINT(x) printf("%s:%d %s\n", __FILE__, __LINE__,x)

11 UW CSE 374 Winter 2017

Conditional compilation

#ifdef FOO (matching #endif later in file)
#ifndef FOO (matching #endif later in file)
#if FOO > 2 (matching #endif later in file)
(You can also have a #else inbetween somewhere.)
Simple use: #ifdef DEBUG // do following only when debugging

 printf(...);
 #endif

Fancier: #ifdef DEBUG // use DBG_PRINT for debug-printing
 #define DBG_PRINT(x) printf("%s",x)
 #else
 #define DBG_PRINT(x) // replace with nothing
 #endif

•  Note: gcc -D FOO makes FOO “defined”

12 UW CSE 374 Winter 2017

Back to header files

•  Now we know what this means:
#ifndef SOME_HEADER_H
#define SOME_HEADER_H
... rest of some_header.h ...
#endif

•  Assuming nobody else defines SOME_HEADER_H
(convention), the first #include "some_header.h" will do
the define and include the rest of the file, but the second
and later will skip everything
–  More efficient than copying the prototypes over and

over again
–  In presence of circular includes, necessary to avoid

“creating” an infinitely large result of preprocessing
•  So we always do this

13 UW CSE 374 Winter 2017

C preprocessor summary

•  A few easy to abuse features and a bunch of
conventions (for overcoming C’s limitations).
–  #include (the way you say what other definitions

you need; cycles are fine with “the trick”)
–  #define (avoids magic constants; parameterized

macros have a few justifiable uses; token-based
text replacement)

–  #if... (for showing the compiler less code)

14 UW CSE 374 Winter 2017

