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Administrivia 

•  Midterm should be graded this weekend and returned 
next Monday (or, at least, that’s the plan) 

•  HW5 due Tuesday Thursday night 
–  Questions?  Need to look at demo again? 

•  HW6 – multiple parts with a partner 
–  Pick a partner by early next week.  Partner info 
must be submitted online by 11pm Wednesday 
(details on how/where in a couple of days) 
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The story so far… 

•  We’ve looked at the basics of the preprocessor 
–  #include to access declarations in header files 
–  #define for symbolic constants 

•  Now: 
–  More details; where it fits 
–  Multiple source and header files 
–  A bit about macros (somewhat useful, somewhat a 

warning) 
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The compilation picture 

gcc does all this for you (reminder) 
•  -E to only preprocess; result on stdout (rare) 
•  -c to stop with .o (common for individual files in larger 

program) 
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More about multiple files 

Typical usage: 
•  Preprocessor #include to read file containing 

declarations describing code 
•  Linker combines your .o files and other code 

–  By default, the “standard C library” 
–  Other .o and .a files 
–  Whole lecture on linking and libraries later…  
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The preprocessor 

•  Rewrites your .c file before the compiler gets at the code. 
–  Lines starting with # tell it what to do 

•  Can do crazy things (please don’t); uncrazy things are: 
1. Including contents of header files 
2. Defining constants and parameterized macros 

•  Token-based, but basically textual replacement 
•  Easy to misdefine and misuse 

3. Conditional compilation 
•  Include/exclude part of a file 
•  Example uses: code for debugging, code for 

particular computers (handling portability issues), 
“the trick” for including header files only once 
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File inclusion (review) 

#include <hdr.h> 
•  Search for file hdr.h in “standard include directories” and 

include its contents in this place 
–  Typically lots of nested includes, result not fit for 

human consumption 
–  Idea is simple: declaration of standard library routines 

are in headers; allows correct use after declaration 
#include "hdr.h" 

–  Same, but first look in current directory 
–  How to break your program into smaller files that can 

call routines in other files 
•  gcc -I option: look first in specified directories for headers 

(keep paths out of your code files) (not needed for 374) 
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Header file conventions 

Conventions: always follow these when writing a header file 
1.  Give included files names ending in .h; only include these 

header files. Never #include a .c source file 
2.  Do not put functions definitions in a header file; only struct 

definitions, prototypes (declarations), and other includes 
3.  Put all your #includes at the beginning of a file 
4.  For header file foo.h start it with: 

#ifndef FOO_H 
#define FOO_H 

and end it with: 
#endif 

(We will learn why very soon) 
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Simple macros (review) 

Symbolic constants and other text 
#define NOT_PI  22/7 
#define VERSION 3.14 
#define FEET_PER_MILE  5280 
#define MAX_LINE_SIZE 5000 

•  Replaces all matching tokens in rest of file 
–  Knows where “words” start and end (unlike sed) 
–  Has no notion of scope (unlike C compiler) 
–  (Rare: can shadow with another #define or use 

#undef to remove) 
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Macros with parameters 

#define TWICE_AWFUL(x) x*2 
#define TWICE_BAD(x) ((x)+(x)) 
#define TWICE_OK(x) ((x)*2) 
double twice(double x) { return x+x; }   // best (editorial opinion) 
 
•  Replace all matching “calls” with “body” but with text of 

arguments where the parameters are (just string substitution) 
•  Gotchas (understand why!): 

y=3;  z=4;  w=TWICE_AWFUL(y+z); 
y=7;  z=TWICE_BAD(++y);  z=TWICE_BAD(y++); 

•  Common misperception: Macros avoid performance overhead of 
a function call (maybe true in 1975, not now) 

•  Macros can be more flexible though (TWICE_OK works on ints 
and doubles without conversions (which could round)) 
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Justifiable uses 

Parameterized macros are generally to be avoided (use 
functions), but there are things functions cannot do: 

#define NEW_T(t, howmany)  ((t*)malloc((howmany)*sizeof(t)) 
 
#define PRINT(x)  printf("%s:%d %s\n", __FILE__, __LINE__,x) 
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Conditional compilation 

#ifdef FOO  (matching #endif later in file) 
#ifndef FOO  (matching #endif later in file) 
#if FOO > 2  (matching #endif later in file) 
(You can also have a #else inbetween somewhere.) 
Simple use:   #ifdef DEBUG // do following only when debugging 

   printf(...); 
           #endif 

Fancier:         #ifdef DEBUG // use DBG_PRINT for debug-printing 
           #define DBG_PRINT(x) printf("%s",x) 
           #else 
             #define DBG_PRINT(x) // replace with nothing 
           #endif 

•  Note: gcc -D FOO makes FOO “defined” 
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Back to header files 

•  Now we know what this means: 
#ifndef SOME_HEADER_H 
#define SOME_HEADER_H 
... rest of some_header.h ... 
#endif 

•  Assuming nobody else defines SOME_HEADER_H 
(convention), the first #include "some_header.h" will do 
the define and include the rest of the file, but the second 
and later will skip everything 
–  More efficient than copying the prototypes over and 

over again 
–  In presence of circular includes, necessary to avoid 

“creating” an infinitely large result of preprocessing 
•  So we always do this 
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C preprocessor summary 

•  A few easy to abuse features and a bunch of 
conventions (for overcoming C’s limitations). 
–  #include (the way you say what other definitions 

you need; cycles are fine with “the trick”) 
–  #define (avoids magic constants; parameterized 

macros have a few justifiable uses; token-based 
text replacement) 

–  #if... (for showing the compiler less code) 
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