
(c) Copyright Larry Snyder 1998

Construciton of an Arithmetic/Logic Unit

The ALU performs all of the basic
operations of the machine. RISC

architectures attempt to make all of
the operations have similar

complexity

(c) Copyright Larry Snyder 1998

Data Path Structure
add $6, $7, $2

0

1

0

0

0

0

1

1

0

0

1

0

1

1

0

1

0

1

1

1

0

0

0

0

1bit ALU

1bit ALU

1bit ALU

1bit ALU

1bit ALU

1bit ALU

1bit ALU

1bit ALU

7 6 5 4 3 2 1 0 C

Register File ALU

memory

memory

memory

memory

memory

memory

memory

memory

Bit
Sliceword

size

(c) Copyright Larry Snyder 1998

Logic Gates*

AND(a,b): return c = a · b

OR(a,b): return c = a + b

NOT(a): return c = ~a

MUX(d,a,b): return c =

(if d=0 then

a else b)

a b c
0 0 0
0 1 1
1 0 1
1 1 1

a c
0 1
1 0

d c
0 a
1 b

a b c
0 0 0
0 1 0
1 0 0
1 1 1

*Bill’s nickname in college?

a
b

a
b

a

c

c

c

d

a

b

0

1

c

(c) Copyright Larry Snyder 1998

1Bit ALU: Logic Operations

Bitwise Logic Operations

AND $result,$a,$b

OR $result,$a,$b

LOGIC-OPs

a

b
result

op

LOGIC-OPs: MUX(op, AND(a,b), OR(a,b))

op
a

b
result

+

·

0

1

(c) Copyright Larry Snyder 1998

1Bit Adder, CarryOut

3 inputs (a, b, Cin), 2 outputs (Sum, Cout)

a b cin cout sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Cout = (b ⋅ Cin) + (a ⋅ Cin) + (a ⋅ b) + (a ⋅ b ⋅ Cin)

Addition

a

b
Sum

Cout

Cin

Cout: OR(AND(b,Cin), AND(a, Cin), AND(a,b))

(c) Copyright Larry Snyder 1998

Logic for Carry Out

Cout = (b ⋅ Cin) + (a ⋅ Cin) + (a ⋅ b) + (a ⋅ b ⋅ Cin)

Cout: OR(AND(b,Cin), AND(a, Cin), AND(a,b))

a

b

Carry Out

CarryIn

(c) Copyright Larry Snyder 1998

1Bit Adder, Sum

Sum = (a ⋅ b ⋅ Cin) + (a ⋅ b ⋅ Cin)
+ (a ⋅ b ⋅ Cin) + (a ⋅ b ⋅ Cin)

a b cin cout sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Addition

a

b
Sum

Cout

Cin

Sum: OR(AND(a, NOT(b), NOT(Cin)), AND(NOT(a),
 b, NOT(Cin)), AND(NOT(a), NOT(b), Cin),
AND(a,b,Cin))

(c) Copyright Larry Snyder 1998

1-Bit And/Or/Add ALU

Combine components
Set op=1 for and $result, $a,$b
Set op=2 for or $result, $a,$b
Set op=3 for add $result, $a,$b

result

Addition

a

b

Cout

Cin op

AND

OR

 0

 1

 2

(c) Copyright Larry Snyder 1998

32-Bit ALU

•
•
•

Op

a0

b0

result0
Cin

Cout

 ALU0

a1

b1

result1
Cin

Cout

 ALU1

a2

b2

result2
Cin

Cout

 ALU2

result31
Cin

Cout

 ALU31
a31

b31

Addition

a

b

Cout

Cin op

AND

OR

 0

 1

 2

Compose 32 bit-slices

