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Construciton of an Arithmetic/Logic Unit

The ALU performs all of the basic
operations of the machine. RISC

architectures attempt to make all of
the operations have similar

complexity
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Data Path Structure
add  $6, $7, $2
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Logic Gates*

AND(a,b): return c = a · b

OR(a,b): return c = a + b

NOT(a): return c = ~a

MUX(d,a,b): return c = 

(if d=0 then

a else b)

a b c
0 0 0
0 1 1
1 0 1
1 1 1

a c
0 1
1 0

d c
0 a
1 b

a b c
0 0 0
0 1 0
1 0 0
1 1 1

*Bill’s nickname in college?
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1Bit ALU: Logic Operations

Bitwise Logic Operations

AND $result,$a,$b

OR $result,$a,$b

LOGIC-OPs

a

b
result

op

LOGIC-OPs: MUX(op, AND(a,b), OR(a,b))

op
a

b
result
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1Bit Adder, CarryOut

3 inputs (a, b, Cin), 2 outputs (Sum, Cout)

a b    cin  cout   sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Cout = (b ⋅ Cin) + (a ⋅ Cin) + (a ⋅ b) + (a ⋅ b ⋅ Cin)

Addition

a

b
Sum

Cout

Cin

Cout: OR(AND(b,Cin), AND(a, Cin),  AND(a,b))
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Logic for Carry Out

Cout = (b ⋅ Cin) + (a ⋅ Cin) + (a ⋅ b) + (a ⋅ b ⋅ Cin)

Cout: OR(AND(b,Cin), AND(a, Cin),  AND(a,b))

a

b

Carry Out

CarryIn
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1Bit Adder, Sum

Sum = (a ⋅ b ⋅ Cin) + (a ⋅ b ⋅ Cin)
+ (a ⋅ b ⋅ Cin) + (a ⋅ b ⋅ Cin)

a b    cin  cout   sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Addition

a

b
Sum

Cout

Cin

Sum: OR(AND(a, NOT(b), NOT(Cin)), AND(NOT(a),
 b, NOT(Cin)), AND(NOT(a), NOT(b), Cin),
AND(a,b,Cin))
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1-Bit And/Or/Add ALU

Combine components
Set op=1 for and $result, $a,$b
Set op=2 for or $result, $a,$b
Set op=3 for add $result, $a,$b

result

Addition

a

b

Cout

Cin op

AND

OR

 0

 1

 2
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32-Bit ALU

•
•
•

Op

a0

b0

result0
Cin

Cout

 ALU0

a1

b1

result1
Cin

Cout

 ALU1

a2

b2

result2
Cin

Cout

 ALU2

result31
Cin

Cout

 ALU31
a31

b31

Addition

a

b

Cout

Cin op

AND

OR

 0

 1

 2

Compose 32 bit-slices


