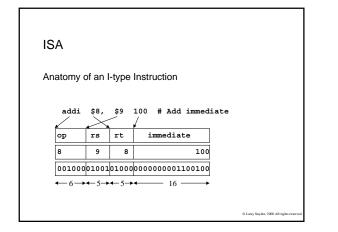
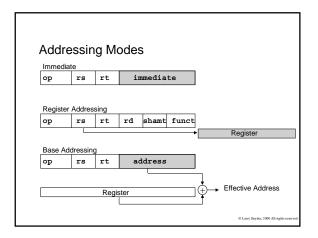
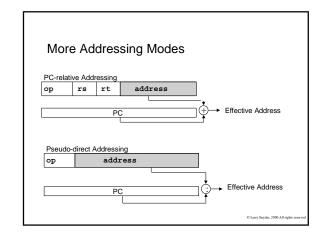

Review of MIPS ISA and ALU

Though many simple and intuitive ideas have been covered, they collectively have a large impact, enabling modern computers to run efficiently and reliably

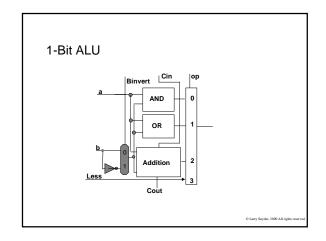

Basic Representations

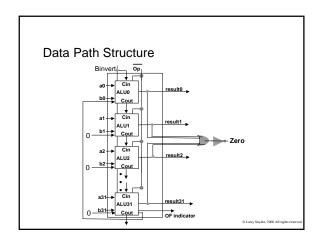
What is this bit sequence? 1011 1000 0100 0001 0000 0000 0000 1100 Hexadecimal Unsigned Integer Signed-magnitude Integer Twos Complement Integer Floating Point Number Instruction ASCII


© Larry Snyder, 2000 All right



© Larry Snyder, 2000 All right





egiste	r Usag	je	
Name	Reg. No.	Usage Pi	reserved On Call
\$zero	0	Constant value 0	N.A.
	1	Reserved for Ass	n N.A.
\$v0-\$v1	2-3	Result registers	No
\$a0-\$a3	4 - 7	Arguments	Yes
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Locals	Yes
\$t8-\$t9	24-25	More temporaries	No
	26-27	Operating System	N.A.
\$qp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

