Detecting and Handling Exceptions and
Interrupts

The datapath has to be prepared to
handle unusual situations -- it cannot
stop, but must keep going and
recover

© Larry Snyder, 2000, All rights reserved

Conditions Arise ...

Classify the unusual things that can happen

» Exceptions -- unusual events that affect the
datapath, regardless of whether they are
internally or externally generated

* Interrupts -- externally generated events

Examples ...
* |/O device requests
* Invoke operating system from user program
 Arithmetic overflow
» Undefined instruction
* Errors

© Larry Snyder, 2000, All rights reserved

Abstracting

Control

Finite state
machine

representatio
of datapath

Yo wiet ez

FagDzt=0
Rie gitiribe
e mkaRimg =1

© Larry Snyder, 2000, All rights reserved

Detection

Start

Memory address
computation

Memory
access

MemRead
lorD =1

Memirite
loD =1

Write-back step

RegWiite

Memory
access

Instruction decode/

Instruction fetch Register fetch

MemRead 1

ALUSrcA =0
lorD =

ALUSIcA=0
ALUSrcB = 11
ALUOp =00

PCWiite
PCSource = 10

0
ALUOp =10

PCwiiteCond
PCSource = 01

REpocmmpiitn IntCause = 1 IntCause = 0
"/ causewiite w CauseWiite
RegDst = 1 ALUSrcA =0 ALUSIcA = 0
RegWiite ALUSIcB = 01 ALUScB = 01
MentoReg = 0 ALUOp =01 ALUOp = 01
EPCWiite EPCWiite
PCWite PCWite

PCSource = 11, PCSource = 11,

g=1
RegDst = 0

© Larry Snyder, 2000, All rights reserved

Exceptions in the Pipeline

» Handling exceptional conditions in the pipeline
is difficult ... multiple instructions are in
process, but execution must be stopped at a
coherent point

» The operating system will handle exceptions

* Two requirements ...

» Save the address of offending instruction in
EPC, exception program counter

» Transfer control to operating system

© Larry Snyder, 2000, All rights reserved

Keeping Track of What Happened

* The machine must tell the OS what happened

» A “cause register” or “exception flags” are bit
sequences that the processor sets indicating
errors

» “Vectored interrupts” allow the processor to
jump to different locations in the operating
system depending on the exceptional
condition

© Larry Snyder, 2000, All rights reserved

Add-ins for Exceptions

PCWiteCond CauseWrite
IntCause
EPCWrite.
PCSource
| ey
|_ALUSICE
ALUSIcA
RegWite
RegDst
Jump i
Instructon 25 0] 28 @2‘3 address [31 I 2:
left 2
- [31-26] FC [31-28]
M Instruction Read
u P Address 125 21] register 1
X
Memory Instruction Read Read a
d 120 18] register 2 data 1 o Zer
MermD: ’ Registers ALU| ALUOL Erq
Instruction | Wiite ~ Read result
Wit 115 OIf ¥ instruction register gata 2
i
e e Instruction | | 115 111 Wite
register data
Instruction 0 0 mtepf0
[15 0] M M
u u] Cause
X %
Mermory U 1 m—t
data | ALY
register > oxtond control
Instruction [5 0]
© Larry Snyder, 2000, All rights reserved
l Branch
IF Flush D.Flush EXFlush

40000040

EXIMEM

M
[t Contr ek u MEMMB
[o= | —
! EX) M
IFID Py

[

!

J
RegWie I

[

[

ALUSe

Mermiite

Shit
left 2

Read

R
register 1922 1

Data

at
Instruction oy

mermory

Read
register 2 =
Registers

MemtoReg

Address

Read|
data [~

register Rea
Wit data 2|
ldata

e

Read —
data

it
data

xc=

\j\nwuchun [25 21] RegDst| | -——)
N 1

Instruction [20_16]
stucton[20 181,

Instruction [20 18] -] m
Instruction [15_11] 1 U
el) :

unit

MemRead

© Larry Snyder, 2000, All rights reserved

