Detecting and Handling Exceptions and
Interrupts

The datapath has to be prepared to
handle unusual situations -- it cannot
stop, but must keep going and
recover
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Conditions Arise ...

Classify the unusual things that can happen

» Exceptions -- unusual events that affect the
datapath, regardless of whether they are
internally or externally generated

* Interrupts -- externally generated events

Examples ...
* |/O device requests
* Invoke operating system from user program
 Arithmetic overflow
» Undefined instruction
* Errors
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Detection
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Exceptions in the Pipeline

» Handling exceptional conditions in the pipeline
is difficult ... multiple instructions are in
process, but execution must be stopped at a
coherent point

» The operating system will handle exceptions

* Two requirements ...

» Save the address of offending instruction in
EPC, exception program counter

» Transfer control to operating system
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Keeping Track of What Happened

* The machine must tell the OS what happened

» A “cause register” or “exception flags” are bit
sequences that the processor sets indicating
errors

» “Vectored interrupts” allow the processor to
jump to different locations in the operating
system depending on the exceptional
condition
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Add-ins for Exceptions
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