## Decimal \& Binary Representation Systems

Decimal \& binary are positional representation systems

- each position has a value: $d *$ base ${ }^{i}$
- for example, $321_{10}=3^{*} 10^{2}+2^{*} 10^{1}+1^{*} 10^{0}$
- for example, $101000001_{2}=$
$1^{*} 2^{8}+0^{*} 2^{7}+1^{*} 2^{6}+0^{*} 2^{5}+0^{*} 2^{4}+0^{*} 2^{3}+0^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}$

The general formula for a positive number in:

- decimal: $\sum_{i=0}^{n} a_{i} \times 10^{n-i}$, where the $\mathrm{a}_{\mathrm{i}}$ are between $0 \& 9$
- binary: $\sum_{i=0}^{m} b_{i} \times 2^{m-i}$, where the $\mathrm{b}_{\mathrm{i}}$ are 0 or 1


## Decimal \& Binary Representation Systems

Converting binary to decimal:

- add the factors
- $101000001_{2}=$
- $1^{*} 2^{8}+0^{*} 2^{7}+1^{*} 2^{6}+0^{*} 2^{5}+0^{*} 2^{4}+0^{*} 2^{3}+0^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}=$ $256+0+64+0+0+0+0+0+1=321$

Converting decimal to binary:

- decompose the decimal number into powers of 2
- 321

$$
\begin{aligned}
& =256+64+1 \\
& =1^{*} 2^{8}+0^{*} 2^{7}+1^{*} 2^{6}+0^{*} 2^{5}+0 * 2^{4}+0^{*} 2^{3}+0^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0} \\
& =101000001_{2}
\end{aligned}
$$

## Hexadecimal Representation System

The hexadecimal numbers:

- 0-9, a,b, c,d,e,f
- binary values 0000 to 1111
- easier to use than binary numbers (1 digit represents more values)
- quick conversion to binary numbers

The general formula for a hexadecimal number is:

- $\sum_{i=0}^{n} a_{i} \times 16^{n-i}$, where the $\mathrm{a}_{\mathrm{i}}$ are between 0 \& f
- for example, $141_{16}=1^{*} 16^{2}+4^{*} 16^{1}+1^{*} 16^{0}=321_{10}$

Converting binary to hexadecimal:

- group into 4-bit numbers: $101001011_{2}=1 \quad 0100 \quad 1011_{2}$
- translate each group into a hexadecimal digit:

$$
10100 \quad 1011_{2}=14 \mathrm{~B}_{16}=0 \times 14 b
$$

Converting hexadecimal to binary

- expand each hex digit to a sequence of binary digits


## Useful Powers of 2

$2^{10}=1024_{10} \approx 10^{3}=1 \mathrm{~K}$
$2^{20} \approx 10^{6}=1 \mathrm{M}$
$2^{30} \approx 10^{9}=1 \mathrm{G}$

Used particularly in storage sizes:

- 16KB cache
- 64MB memory
- 4GB disk


## Octal Representation System

Used by curmudgeons:

- Base 8
- Default output for some unix tools ;-(
- Sometimes useful for C -- can embed in strings
- "Hello there $1033!1006$ "


## Representing Positive \& Negative Numbers

Can represent $2^{n}$ different values in n bits

For unsigned integers, the values are $0 . .2^{32}-1$

Need a representation for signed integers with the following properties:

- an equal number of positive \& negative numbers
- a unique representation for 0
- an easy hardware test for 0
- an easy hardware test for the sign
- easy hardware rules for addition/subtraction

Some definitions:

- least significant bit (Isb): the least magnitude bit (or digit), the one at the rightmost position of the representation
- most significant bit (msb): the greatest magnitude bit (or digit), the one at the leftmost position of the representation


## Two's Complement

Representation for signed integers

- 0 is a series of zeros
- positive numbers: $\mathrm{msb}=0$
- negative numbers: $\mathrm{msb}=1$

To represent a negative number:

- start with the representation for its positive value
- flip all the bits (1's to 0; 0's to 1 )
- add 1 to the Isb using binary arithmetic


## Two's Complement

Example with a 4-bit binary number:

- What is the representation for $6_{10}$ ?
- What is the representation for $-6_{10}$ ?
- What is the representation of 0 ?
- What is the range of positive numbers?
- What is the range of negative numbers?
- How do you represent $6_{10}$ in an 8 -bit binary number?
- How do you represent $-6_{10}$ in an 8 -bit binary number?
- How does the hardware recognize whether a number is positive or negative?
- How does the hardware recognize whether a number is zero?


## Addition/Subtraction in Two's Complement

## Addition

- do not treat the sign bit specially; perform an addition on all bits
- if add 2 numbers of opposite signs, this will work fine
- if add 2 positive numbers \& result "appears" to be negative ( $\mathrm{msb}=1$ )
- overflow (value won't fit in "word size" number of bits)
- generates an exception (unscheduled procedure call to the operating system) in the program (wait until the end of the quarter)
- if add 2 negative numbers \& result "appears" to be positive ( $\mathrm{msb}=1$ )
- underflow
- generates an exception in the program (again, wait until the end of the quarter)


## Subtraction

- take the 2's complement of the subtrahend \& add it to the other operand


## Alternative Representations

Historically there have been other representations for signed integers, but they are no longer used

## Signed magnitude

- separate bit for the sign
- extra step to set it
- not clear where to store it
- has both positive \& negative values for zero


## One's complement

- negative number is the complement of the absolute value

Good: positive \& negative values are balanced

- largest positive value: $2,147,483,647_{10}$
- largest negative value: $-2,147,483,647_{10}$

Bad: has 2 values for zero

- positive zero: 00..... 00
- negative zero: 11..... 11


## A Bag of Bits

Bit patterns have no meaning
Their meaning depends on how they are interpreted:

- signed integers
- unsigned integers
- floating point numbers
- characters
- instructions

For data, the interpretation is determined by the instruction.

