
Instruction Types
Computation :

• arithmetic (e.g., add)

• logical (e.g., xor)

• compare (e.g., set if not equal)

Data transfer :

• load

• store

Control

• branch

• jump

MIPS Computation Instructions
Opcode rd, rs, rt

Opcode rd, rs, immed

• rd: destination register (modify)

• rs: source register (read-only)

• rt: source/destination register (read-only/modify)

• immed: 16-bit value (constant)

MIPS Computation Instructions
Some examples:

add $8, $9, $10 # $8 = $9+$10

addi $t0, $t1, 20 # $t0 = $t1+20

addu $8, $9, $10 # $8 = $9+$10

sub $t5, $0, $t5 # $t5 = -$t5

and $8, $9, $10 # $8 = $9&$10

slt $8, $9, $10 # if $9<$10, $8 = 1,

else $8 = 0

slti $8, $9, -6 # if $9<-6, $8 = 1,

else $8 = 0

The GPRs are used to store the result of a condition.

Alternative architecture: condition codes

• special 1-bit registers that store the result of specific
conditions
• whether the result is zero
• whether the result is negative

The machine does not know if a value is signed or unsigned
(the bag of bits) --- you have to specify this by using the
appropriate instruction

Instruction Encoding
ISA defines the formats for instructions

• what fields they contain

• the size of the fields

• the field values & what the values signify

Being a RISC, MIPS has few (3) instruction formats

• all instructions are the same length, 32 bits

• most formats have similar fields for example, an opcode, at
least one source register

• fields that are common to more than one format have the
same location in the instruction for example, the opcode is
always first

• fields that are common to more than one format are the
same size for example, the opcode is always 6 bits

Shows us how the CPU processes instructions

• bridge between architecture & implementation

R-type Format

For arithmetic, logical, comparative instructions with register
operands

31 26 20 16 10 6

[opcode] [rs] [rt] [rd] [shamt] [func]

25 21 15 11 5 0

• opcode, func = operation
• opcode = a computational instruction
• func = which computation

• rs, rt = source operands

• rd = destination operand

• shamt = shift distance in bits

add $8, $9, $10
[0][9][10][8][X][32]
xor $11, $12, $13
[0][12][13][11][X][38]
sll $10, $16, 4
[0][X][16][10][4][0]

I-type Format

For arithmetic, logical, comparative instructions with one register
operand & one constant operand

31 26 20 16

[opcode] [rs] [rt] [immed]

25 21 15 0

• opcode = operation
• opcode = a computational instruction

• rs = source operand

• rt = destination operand

• immed = constant, ± 215

• sign-extended when used (replicate msb)

Using an immediate value is faster than loading the constant from
memory & saves using a register

ori $8, $9, -256
[13][9][8][-256]

