UW CSE378 Cache Intro

Memory Hierarchy

« Memory: hierarchy of components of various speeds and
capacities
¢ Hierarchy driven by cos and performance
e Inearly days
— Primary memory = main memory
— Secondary memory = disks
» Nowadays hierarchy within the primary memory
— One or more levels of caches on-chip (SRAM, expensive, fast)

— Generally one level of cache off-chip (DRAM or SRAM; less
expensive, slower)

— Main memory (DRAM; slower; cheaper; more capacity)

Goal of a memory hierarchy

» Keep closeto the ALU the information that will be needed
now and in the near future
— Memory closest to ALU is fastest but also most expensive
* S0, keep close to the ALU only the information that will be
needed now and in the near future
» Technology trends
— Speed of processors (and SRAM) increase by 60% every year
— Latency of DRAM S decrease by 7% every year
— Hence the processor-memory gap or the memory wall bottleneck

11/17/2003 CSE378 Intro to caches 11/17/2003 CSE378 Intro to caches 2
Processor-Memory Performance Gap Typical numbers
« X Memory latency decrease (10x over 8 years but densities have increased Technol ogy Typi ca accesstime M byte
100x over the same period)
* 0x86 CPU speed (100x over 10 years) SRAM 3-20ns $50-200
ol Pertium IV DRAM 40-120ns $1-10
~ Pentium il Disk milliseconds= 10° ns $0.01-0.1
Pentium Pro
penti M ‘ “Memory wall”
386/“ Memory gﬁp"‘ ‘
M
10 —
1
89 91 93 95 97 99 01
11/17/2003 CSE378 Intro to caches 3

11/17/2003 CSE378 Intro to caches 4

UW CSE378 Cache Intro

Principle of locality

* A memory hierarchy works because text and data are not
accessed randomly
« Computer programs exhibit the principle of locality

— Temporal locality: data/code used in the past is likely to be reused
in the future (e.g., code in loops, data in stacks)

— Spatial locality: data/code close (in memory addresses) to he
data/code that is being presently referenced will be referenced in
the near future (straight-line code sequence, traversing an array)

* Working set: the memory locationswhich aprogramis
actively usng within a particular window of time

11/17/2003 CSE378 Intro to caches

Caches

* Regigersare not sufficient to keep enough data locality
closetothe ALU
e Main memory (DRAM) istoo “far”. It takes many cycles
to accessit
— Instruction memory is accessed every cycle
» Hence need of fast memory between main memory and
registers Thisfast memory iscalled a cache.
— A cache is much smaller (in amount of storage) than main memory
¢ Goal: keep in the cache what' s most likely to be referenced
inthe near future

11/17/2003 CSE378 Intro to caches 6

Basic use of caches

¢ When fetching aningruction, first check to see whether it
isinthe cache
— If so (cache hit) bring the instruction from the cache to the IR.
— If not (cache miss) go to next level of memory hierarchy, until
found
¢ When performing aload, firg check to see whether itisin
the cache
— If cache hit, send the data from the cache to the destination register
— If cache miss go to next level of memory hierarchy, until found
¢ When performing a dore, several posshilities
— Ultimately, though, the store has to percolate to main memory

11/17/2003 CSE378 Intro to caches 7

Levelsin the memory hierarchy

64-128 AL U registers

. On-chip cache: split I-cache; D-cache
wauatenrs [(NNUZZ4 Jphipeate

SRAM/DRAM; Off-chip cache; 128KB - 8MB

~10-20 ns

DRAM; 40-100 ns Main memory; up to 4 GB
afew milliseconds Secondary memory; 10-100's of GB

Archival storage

11/17/2003 CSE378 Intro to caches 8

UW CSE378 Cache Intro

Caches are ubiquitous

¢ Not anew idea. Firg cacheinIBM Sysenv85 (late 60's)

¢ Concept of cache used in many other aspects of computer
systems

— disk cache, network server cache etc.

» Worksbecause programs exhibit locality

¢ Lotsof research on cachesinlag 20 years because of the
increasing gap between processor peed and (DRAM)
memory latency

» Every current microprocessor hasa cache hierarchy with at
least one level on-chip

11/17/2003 CSE378 Intro to caches 9

Main memory access (review)

* Recal:
— In alLoad (or Store) the address in an index in the memory array

— Each byte of memory has a unique address, i.e., the mapping
between memory address and memory location is unique

11/17/2003 CSE378 Intro to caches 10

Cache Access for aLoad or an Instr. fetch

» Cacheismuch smaller than main memory
— Not all memory locations have a corresponding entry in the cache
at agiventime
« When amemory reference is generated, i.e., when the
ALU generatesan address
— Thereisalook-up in the cache: if the memory location is mapped

in the cache, we have a cache hit. The contents of the cache
location is returned to the ALU.

— If we don't have a cache hit (cache miss), we have to look in next
level in the memory hierarchy (i.e., other cache or main memory)

11/17/2003 CSE378 Intro to caches 1

Cache access

How do you know
where to look?

How do you know if

thereis a hit? miss

Main memory is
accessed only if there
was a cache miss

11/17/2003 CSE378 Intro to caches 12

UW CSE378 Cache Intro

Some basi ¢ questions on cache design

» When do we bring the contents of a memory location in the
cache?
¢ Where do we put it?
¢ How do we know it’' sthere?
¢ What happensif the cacheisfull and we want to bring
something new?
— Infact, a better question is “what happens if we want to bring

something new and the place where it's supposed to go is already
occupied?’

11/17/2003 CSE378 Intro to caches 13

Some “top level” answers

» When do we bring the contents of a memory location in the
cache? -- Thefirg time thereisa cache missfor that
location, that is* on demand”

e Wheredoweputit? -- Dependson cache organization
(see next dides)

* How do we know it' sthere? -- Each entry in the cache
carriesitsown name, or tag

¢ What happensif the cacheisfull and we want to bring
something new? One entry currently in the cache will be
replaced by the new one

11/17/2003 CSE378 Intro to caches 14

Generic cache organization

—Generated by ALU

Address data

Address data

Address data

Address data

T T I FT T FFH —Cache entry or

cache block or

Address data cacheline

Address If address (tag) generated by ALU = address (tag) of a

or tag cache entry, we have a cache hit; the data in the cache
entry is good

11/17/2003 CSE378 Intro to caches 15

Cache organizations

* Mapping of amemory location to a cache entry can range

fromfull generality to very regrictive
— In general, the data portion of a cache block contains several words

< If amemory location can be mapped anywhere in the
cache (full generality) we have afully associative cache

« If amemory location can be mapped at a Sngle cache entry
(mogt redtrictive) we have a direct-mapped cache

« If amemory location can be mapped at one of several
cache entries, we have a set-associative cache

11/17/2003 CSE378 Intro to caches 16

UW CSE378 Cache Intro

How to check for ahit?

¢ For afully asociative cache

— Check all tag (address) fields to see if there is a match with the
address generated by ALU

— Very expensive if it has to be done fast because need to perform all
the comparisons in parallel

— Fully associative caches do not exist for general-purpose caches
¢ For adirect mapped cache

— Check only the tag field of the single possible entry
» For aset associative cache

— Check the tag fields of the set of possible entries

11/17/2003 CSE378 Intro to caches 17

Cache organization -- direct-mapped

* Mog redricted mapping
— Direct-mapped cache. A given memory location (block) can only
be mapped in a single place in the cache. Generally this place
given by:
(block address) mod (number of blocks in cache)

11/17/2003 CSE378 Intro to caches 18

Direct-mapped cache

All addresses

Clines

Main memory
11/17/2003 CSE378 Intro to caches 19

Fully-associative cache

¢ Mog general mapping

— Fully-associative cache. A given memory location (block) can be
mapped anywhere in the cache.

— No cache of decent size is implemented this way but this is the
(general) mapping for pages from virtual to physical space (disk to
main memory, see later) and for small TLB’s (thiswill also be
explained soon).

11/17/2003 CSE378 Intro to caches 20

UW CSE378 Cache Intro

Fully-associative cache

Cache

Anymemory []

Set-associative caches

» Lessredricted mapping

— Set-associative cache. Blocks in the cache are grouped into sets
and a given memory location (block) maps into a set. Within the

Main memory
block canmapto|________| set the block can be placed anywhere. Associativities of 2 (two-
aRy-CaCneDIoCK way set-associative),4, 8 and even 16 have been implemented.
 Direct-mapped = 1-way set-associative
 Fully associative with mentriesis m-way set associative
11/17/2003 CSE378 Intro to caches 21 11/17/2003 CSE378 Intro to caches 22
Set-associative cache Cache hit or cache miss?
Cache
¢ How to detect if amemory address (a byte address) hasa
valid image in the cache:
¢ Addressisdecomposed in 3 fields
— block offset or displacement (depends on block size)
Bank 0 Bank 1 — index (depends on number of sets and set-associativity)
— tag (the remainder of the address)
* Thetag array has awidth equal to tag
A memory block mapsinto a
specific block of either set
Main memory
11/17/2003 CSE378 Intro to caches 23 11/17/2003 CSE378 Intro to caches 24

UW CSE378 Cache Intro

Thesefields Tag index d
have the same
size

data

data

data
data
data

|
%&8888
P

tag data

Hit detection (direct-mapped cache)

d corresponds to number
of bytesin the block;

index corresponds to
number of blocksin the
cache;

tag isthe remaining bits
in the address.

If tag(gen. address) = tag(entry pointed by index in cache),

Example of a direct-mapped cache

* DEC Station 3100

— 64 KB (when giving the size, or capacity, of a cache, only the data
part is counted)

— Each block is 4 bytes (block size); hence 16 K blocks (aka lines)

— displacement field: d = 2 hits (d = log, (block size))

— index field: i = 14 bits (i = log, (nbr of blocks))

— tagfield : t =32 - 14 -2 = 16 bits

we have a hit
11/17/2003 CSE378 Intro to caches 25 11/17/2003 CSE378 Intro to caches 26
Dec 3100 Exxample of a Cache with longer blocks
ec .
: cap. 64 KB, block sze 16 bytes)
Tag index d T index d
_i6hits T T —
16 bits| 32 hits 16 bits| 128 bits
ag data ag datal
ag data ag datal
ag data ag datal
= data Detato ALU = data
NN TS ST TS T SIS AN IS s
— Yes; cache hit — Yes; cache hit \mﬁb
No; cache miss; to nain memory No; cache miss; to npain memory Datato ALU
11/17/2003 CSE378 Intro to caches 27 11/17/2003 CSE378 Intro to caches 28

UW CSE378 Cache Intro

Why set-associative caches?

* Cons

— The higher the associativity the larger the number of comparisons
to be made in parallel for high-performance (can have an impact
on cycle time for on-chip caches)

e Pros
— Better hit ratio

— Great improvement from 1 to 2, less from 2 to 4, minimal after that

11/17/2003 CSE378 Intro to caches

Set associative mapping

Index = log (number of blocks)/
associativity

Bank 0 Bank 1

Note: we need one comparator per
bank + mux to see if we have a hit.

11/17/2003 CSE378 Intro to caches 30

