CSE378 - Cache

Performance metrics for caches

¢ Badc performance metric: hitratio h
h = Number of memory references that hit in the cache/
total number of memory references
Typically h=0.90 to 0.97
» Equivalent metric: missratem=1-h
« Other important metric: Average memory accesstime
Av.Mem. Accesstime = h* T_ .+ (1-h)* T
where T_ ;. isthe time to access the cache (e.g., 1 cycle) and
T..misthe time to access main memory (e.g., 50 cycles)

(Of course this formula has to be modified the obvious way if you
have a hierarchy of caches)

11/17/2003 CSE 378 Cache Performance

Parameters for cache design

« Goal: Have h as high as possible without paying too much for T,

* The bigger the cache size (or capacity), the higher h.

— Truebut too bigacacheincreases T,

— Limit on the amount of “real estate” on the chip (although this limit is not
present for 1 level caches)

* The larger the cache associativity, the higher h.

— True but too much associativity is costly because of the number of
comparators required and might also slow down T, (extralogic needed
to select the “winner”)

« Block (or line) size

— For agiven application, there is an optimal block size but that optimal

block size varies from application to application

11/17/2003 CSE 378 Cache Performance 2

Parameters for cache design (ct’d)

* Writepolicy (seelater)
— There are several policies with, as expected, the most complex
giving the best results
* Replacement algorithm (for set-associative caches)
— Not very important for caches with small associativity (will be
very important for paging systems)
e Split | and D-cachesvs unified caches
— First-level caches need to be split because of pipelining that

requests an instruction every cycle. Allows for different design
parameters for |-caches and D-caches

— Second and higher level caches are unified (mostly used for data)

11/17/2003 CSE 378 Cache Performance

Example of cache hierarchies (don't quote me on

these numbers)
MICRO L1 L2
Alpha 21064 |8K(1), 8K(D), WT, |128K to 8MB,WB,
1-way, 32B 1-way,32B
Alpha21164 |8K(1), 8K(D), WT, |96K, WB, on-chip,
1-way, 32B D l-ufr. [3-way,32B|-u free
Alpha21264 64K (1), 64K(D),? |upto16MB
2-way, ?
Pentium 8K(1),8K(D),both, Depends
2-way, 32B
Pentium 11, 111 16K(1),16K (D), WB, |512K,32B,4-way,
4-way(l),2-way(D), tightly-coupled
32B,l-u free
11/17/2003 CSE 378 Cache Performance

CSE378 - Cache

Examples (cont’ d)

PowerPC 620 32K(1),32K(D),WB |1MB TO 128MB,
8-way, 64B WB, 1-way
MIPSR10000 |[32K(1),32K(D),l-u, [512K to 16MB,
2-way, 32B 2-way, 32B
ISUN UltraSparcl 1| 32K (1),64K(D),l-u, [4-8MB 1-way
4-way
AMD K7 64k(1), 64K (D)
11/17/2003 CSE 378 Cache Performance 5

Back to associativity

* Advantages

— Reduces conflict misses
» Disadvantages

— Needs more comparators

— Accesstime is longer (need to choose among the comparisons, i.e.,
need of a multiplexor)

— Replacement algorithm is needed and could get more complex as
associativity grows

11/17/2003 CSE 378 Cache Performance 6

Replacement algorithm

¢ None for direct-mapped

* Randomor LRU or pseudo-LRU for set-associative caches
— LRU = "least recently used": means that the entry in the set which
has not been used for the longest time will be replaced (think about
a stack)

11/17/2003 CSE 378 Cache Performance 7

Impact of associativity on performance

Missratio
Direct-mapped

Typical curve.

2-way)) .

/ sway Biggest improvement from direct-
mapped to 2-way; then 2 to 4-way

,8-Way then incremental
T

11/17/2003 CSE 378 Cache Performance 8

CSE378 - Cache

Impact of block size

¢ Recall block sze = number of bytes stored in a cache entry
» Onacache missthe whole block isbrought into the cache
« For agiven cache capacity, advantages of large block sze:
— decrease number of blocks: requires lessreal estate for tags
— decrease missrate | F the programs exhibit good spatial |ocality
— increase transfer efficiency between cache and main memory
« For agiven cache capacity, drawbacks of large block sze:
— increase latency of transfers
— might bring unused data | F the programs exhibit poor spatial
locality
— Might increase the number of conflict/capacity misses

11/17/2003 CSE 378 Cache Performance 9

Classifying the cache misses The3 C's

» Compulsory misses(cold gtart)
— The first time you touch a block. Reduced (for a given cache
capacity and associativity) by having large block sizes
¢ Capacity mises
— The working set istoo big for the ideal cache of same capacity and
block size (i.e., fully associative with optimal replacement
agorithm). Only remedy: bigger cache!
« Conflict misses (interference)
— Mapping of two blocks to the same location. Increasing
associativity decreases this type of misses.
» Thereisafourth C: coherence misses (cf. multiprocessors)

11/17/2003 CSE 378 Cache Performance 10

Impact of block size on performance

Missratio Typical form of the curve.
The knee might appear for
8 bytes different block sizes
depending on the application
16 bytes - and the cache capacity
/ y bytes 128 bytes
**/
64 bytes
11/17/2003 CSE 378 Cache Performance 1

Performance revisited

» Recal AvMem. Accesstime= h* T et (1-h) * T o
* WecanexpandonT, .85 T on= Taeet b* Tia
— where T, isthe time to send the address of the block to main
memory and have the DRAM read the block in its own buffer, and
— T,.isthetime to transfer one word (4 bytes) on the memory bus
from the DRAM to the cache, and b is the block size (in words)
(might also depend on width of the bus)
» For example, if T,..= 5and T, ,= 1, what cacheishest
between
— Cl(bl=1)and C2 (b2 = 4) for aprogram with h1 = 0.85 and
h2=0.92 assuming T, = 1in both cases.

11/17/2003 CSE 378 Cache Performance 12

CSE378 - Cache

Writing in a cache

e Onauwrite hit, should we write:
— Inthe cache only (write-back) policy
— In the cache and main memory (or next level cache) (write-
through) policy
» Onacache miss should we
— Allocate a block asin aread (write-all ocate)
— Write only in memory (write-around)

11/17/2003 CSE 378 Cache Performance

Write-through palicy

* Write-through (aka store-through)
— On auwrite hit, write both in cache and in memory
- _On awrite miss, the most frequent option is write-around, i.e., write only
in memory
* Pro
— consistent view of memory ;
— memory is always coherent (better for 1/0);
— morereliable
* memory unitstypically store extra bits with each word to
detect/correct errors (“ECC” = Error-correcting code)
« ECC not required for cache if write-through is used
« Con:
— more memory traffic (can be alleviated with write buffers)

11/17/2003 CSE 378 Cache Performance 14

Write-back palicy

« Write-back (aka copy-back)
— On awrite hit, write only in cache (
« requiresdirty bit to say that val ue has changed
— On awrite miss, most often write-all ocate (fetch on miss) but
variations are possible
— We write to memory when a dirty block is replaced

* Pro-conreverse of write through

11/17/2003 CSE 378 Cache Performance

Cutting back on write backs

¢ Inwrite-through, you write only the word (byte) you
modify

e Inwrite-back (when finally writing to memory), you write
the entire block

— But you could have one dirty bit/word so on replacement you'd
need to write only the words that are dirty

11/17/2003 CSE 378 Cache Performance 16

CSE378 - Cache

Hiding memory latency

* On write-through, the processor has to wait till the memory has stored
the data
« Inefficient since the store does not prevent the processor to continue
working
« To speed-up the process, have write buffers between cache and main
memory
— write buffer is a (set of) temporary register that contains the contents and
the address of what to store in main memory
— The store to main memory from the write buffer can be done while the
processor continues processing
« Same concept can be applied to dirty blocks in write-back policy

11/17/2003 CSE 378 Cache Performance 17

Coherency: cachesand I/O

¢ Ingenera I/O trandfersoccur directly to/from memory

from/to disk

¢ Theproblem: what if the processor and the 1/0 are

accessng the same words of memory?
— Want processor and 1/0 to have a "coherent” view of memory

¢ Similar coherence problem ariseswith multiple CPUs

— Each CPU accesses the same memory, but keeps its own cache

11/17/2003 CSE 378 Cache Performance 18

Preserving coherences with 1/0

* What happens for memory to disk
— With write-through memory is up-to-date. No problem
— With write-back: memory is not up-to-date. Before I/O is done,
need to “purge” cache entries that are dirty and that will be sent to
the disk
* What happens from disk to memory

— The 1/O may change a memory location that is currently in the
cache

— The entries in the cache that correspond to memory locations that
areread from disk must be invalidated
— Need of avalid bit in the cache (or other techniques)

11/17/2003 CSE 378 Cache Performance 19

Reducing Cache Misses with more
“Associativity” -- Victim caches

* Example of an“hardware assi&”

« Victim cache: Small fully-associative buffer “behind” the
cache and “ before” main memory

» Of course cana o exig if cache hierarchy (behind L1 and
before L2, or behind L2 and before main memory)

¢ Main goal: remove some of the conflict missesin direct-
mapped caches (or any cache with low associativity)

11/17/2003 CSE 378 Cache Performance 20

CSE378 - Cache

2.Missin L1; Hit in VC; Send

1. Hit

Cache

memory hierarchy

11/17/2003

3. From next level of

data to register and swap
3. evicted
Victim Cache
Index + Tag
CSE 378 Cache Performance 21

Operation of a Victim Cache

1. Hitin L1; Nothing el se needed

2. MissinL1 for block at location b, hit in victim cache at
location v: swap contentsof b and v (takesan extra cycle)
3. MissinL1, missin victimcache : load missing item
fromnext level and put in L1; put entry replaced inL1in
victim cache; if victim cacheisfull, evict one of itsentries.
Victim buffer of 4 to 8 entriesfor a 32KB direct-mapped
cache workswell.

11/17/2003 CSE 378 Cache Performance 22

