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Memory Hierarchy

• Memory: hierarchy of components of various speeds and 
capacities

• Hierarchy driven by cost and performance

• In early days
– Primary memory = main memory

– Secondary memory = disks

• Nowadays, hierarchy within the primary memory
– One or more levels of caches on-chip (SRAM, expensive, fast)

– Generally one level of cache off-chip (DRAM or SRAM; less 
expensive, slower)

– Main memory (DRAM; slower; cheaper; more capacity)
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Goal of a memory hierarchy

• Keep close to the ALU the information that will be needed 
now and in the near future
– Memory closest to ALU is fastest but also most expensive

• So, keep close to the ALU only the information that will be 
needed now and in the near future

• Technology trends 
– Speed of processors (and SRAM) increase by 60% every year

– Latency of DRAMS decrease by 7% every year

– Hence the processor-memory gap or the memory wall bottleneck
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Processor-Memory Performance Gap
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Typical numbers

Technology Typical access time $/Mbyte

    SRAM 3-20 ns $50-200

    DRAM 40-120ns $1-10

         Disk  milliseconds ≈ 106 ns $0.01-0.1
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Principle of locality

• A memory hierarchy works because text and data are not 
accessed randomly

• Computer programs exhibit the principle of locality
– Temporal locality: data/code used in the past is likely to be reused 

in the future (e.g., code in loops, data in stacks)

– Spatial locality: data/code close (in memory addresses) to he data/
code that is being presently referenced will be referenced in the 
near future (straight-line code sequence, traversing an array)
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Caches

• Registers are not sufficient to keep enough data locality 
close to the ALU

• Main memory (DRAM) is too “far”. It takes many cycles 
to access it
– Instruction memory is accessed every cycle

• Hence need of fast memory between main memory and 
registers. This fast memory is called a cache. 
– A cache is much smaller (in amount of storage) than main memory

• Goal: keep in the cache what’s most likely to be referenced 
in the near future
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Basic use of caches

• When fetching an instruction, first check to see whether it 
is in the cache
– If so (cache hit) bring the instruction from the cache to the IR.
– If not (cache miss) go to next level of memory hierarchy, until 

found 

• When performing a load, first check to see whether it is in 
the cache
– If cache hit, send the data from the cache to the destination register
– If cache miss go to next level of memory hierarchy, until found 

• When performing a store, several possibilities
– Ultimately, though, the store has to percolate to main memory
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Levels in the memory hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-cache 
8-256KB

Off-chip cache; 128KB - 8MB

Main memory; up to 4 GB

Secondary memory; 10-100’s of GB

Archival storage

SRAM; a few ns

SRAM/DRAM; 
≈ 10-20 ns 

DRAM; 40-100 ns

a few milliseconds
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Caches are ubiquitous

• Not a new idea. First cache in IBM System/85 (late 60’s)

• Concept of cache used in many other aspects of computer 
systems
– disk cache, network server cache etc.

• Works because programs exhibit locality

• Lots of research on caches in last 20 years because of the 
increasing gap between processor speed and (DRAM) 
memory latency

• Every current microprocessor has a cache hierarchy with at 
least one level on-chip
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Main memory access (review)

• Recall:
– In  a Load (or Store) the address in an index in the memory array

– Each byte of memory has a unique address, i.e., the mapping 
between memory address and memory location is unique

ALU

Address

Main 
Mem
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Cache Access for a Load or an Instr. fetch

• Cache is much smaller than main memory
– Not all memory locations have a corresponding entry in the cache 

at a given time

• When a memory reference is generated, i.e., when the 
ALU generates an address:
– There is a look-up in the cache: if the memory location is mapped 

in the cache, we have a cache hit. The contents of the cache 
location is returned to the ALU.

– If we don’t have a cache hit (cache miss), we have to look in next 
level in the memory hierarchy (i.e., other cache or main memory)
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Cache access

ALU

Address

Cache

Main 
memory

How do you know 
where to look?

How do you know if  
there is a hit?

Main memory is 
accessed only if there 
was a cache miss

hit

miss
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Some basic questions on cache design

• When do we bring the contents of a memory location in 
the cache?

• Where do we put it?

• How do we know it’s there?

• What happens if the cache is full and we want to bring 
something new?
– In fact, a better question is “what happens if we want to bring 

something new and the place where it’s supposed to go is already 
occupied?”
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Some “top level” answers

• When do we bring the contents of a memory location in 
the cache?  -- The first time there is a cache miss for that 
location, that is “on demand”

• Where do we put it?   -- Depends on cache organization 
(see next slides)

• How do we know it’s there? -- Each entry in the cache 
carries its own name, or tag

• What happens if the cache is full and we want to bring 
something new? One entry currently in the cache will be 
replaced by the new one
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Generic cache organization

Address

Address
Address
Address
Address

Address

data
data
data
data

data

Address 
or tag

Generated by ALU

If address (tag) generated by ALU = address (tag) of a 
cache entry, we have a cache hit; the data in the cache 
entry is good

Cache entry or 
cache block or 
cache line
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Cache organizations

• Mapping of a memory location to a cache entry can range 
from full generality to very restrictive
– In general, the data portion of a cache block contains several words

• If a memory location can be mapped anywhere in the 
cache (full generality) we have a fully associative cache

• If a memory location can be mapped at a single cache 
entry (most restrictive) we have a direct-mapped cache

• If a memory location can be mapped at one of several 
cache entries, we have a set-associative cache
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How to check for a hit?

• For a fully associative cache
– Check all tag (address) fields to see if there is a match with the 

address generated by ALU

– Very expensive if it has to be done fast because need to perform all 
the comparisons in parallel

– Fully associative caches do not exist for general-purpose caches

• For a direct mapped cache
– Check only the tag field of the single possible entry

• For a set associative cache
– Check the tag fields of the set of possible entries



05/21/03 CSE378 Intro to caches 18

Cache organization -- direct-mapped

• Most restricted mapping
– Direct-mapped cache. A given memory location (block) can only 

be mapped in a single place in the cache. Generally this place 
given by:

(block address) mod (number of blocks in cache)
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Direct-mapped cache

Cache

Main memory

All addresses 
mod C map to 
the same cache 
blockC lines

C lines
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Fully-associative cache

• Most general mapping
– Fully-associative cache. A given memory location (block) can be 

mapped anywhere in the cache. 

– No cache of decent size is implemented this way but this is the 
(general) mapping for pages from virtual to physical space (disk to 
main memory, see later) and for small TLB’s (this will also be 
explained soon).
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Fully-associative cache

Cache

Main memoryAny memory 
block can map to 
any cache block
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Set-associative caches

• Less restricted mapping
– Set-associative cache. Blocks in the cache are grouped into sets 

and a given memory location (block) maps into a set. Within the 
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative),4, 8 and even 16 have been implemented.

• Direct-mapped = 1-way set-associative

• Fully associative with m entries is m-way set associative
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Set-associative cache

Cache

Main memory

A memory block maps into a 
specific block of either set

Bank 0 Bank 1
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Cache hit or cache miss?

• How to detect if a memory address (a byte address) has a 
valid image in the cache:

• Address is decomposed in 3 fields:
– block offset  or displacement  (depends on block size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag 
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Hit detection (direct-mapped cache)

data

data

data

data
data

data
tag
tag
tag
tag

tag

tag

Tag                  index                      d

If tag(gen. address) = tag(entry pointed by index in cache), 
we have a hit

d corresponds to number 
of bytes in the block;

index corresponds to 
number of blocks in the 
cache;

tag is the remaining bits 
in the address.

These fields 
have the same 
size
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Example of a direct-mapped cache

• DEC Station 3100
– 64 KB (when giving the size, or capacity, of a cache, only the data 

part is counted)

– Each block is 4 bytes (block size); hence 16 K blocks (aka lines)

– displacement field: d = 2 bits (d = log2 (block size) )

– index field:  i = 14 bits (i = log2 (nbr of blocks) )

– tag field : t = 32 - 14 -2 = 16 bits
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Dec 3100

data

data

data

data
data

data
tag
tag
tag
tag

tag

tag

Tag                  index                      d

16 bits

16 bits 14 bits 2 bits

32 bits

=?
Yes; cache hit

Data to ALU

No; cache miss; to main memory
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Exxample of a Cache with longer blocks 
(cap. 64 KB, block size 16 bytes)

data

data

data

data
data

data
tag
tag
tag
tag

tag

tag

Tag                  index                      d

16 bits

16 bits 12 bits 4 bits

128 bits

=?
Yes; cache hit

Data to ALUNo; cache miss; to main memory

mux
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Why set-associative caches?

• Cons
– The higher the associativity the larger the number of comparisons 

to be made in parallel for high-performance (can have an impact on 
cycle time for on-chip caches)

• Pros
– Better hit ratio 

– Great improvement from 1 to 2, less from 2 to 4, minimal after that
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Set associative mapping
Index = log (number of blocks)/ 
associativity

Note: we need one comparator per 
bank + mux to see if we have a hit.

Bank 0 Bank 1


