
05/21/03 CSE378 Intro to caches 1

Memory Hierarchy

• Memory: hierarchy of components of various speeds and
capacities

• Hierarchy driven by cost and performance

• In early days
– Primary memory = main memory

– Secondary memory = disks

• Nowadays, hierarchy within the primary memory
– One or more levels of caches on-chip (SRAM, expensive, fast)

– Generally one level of cache off-chip (DRAM or SRAM; less
expensive, slower)

– Main memory (DRAM; slower; cheaper; more capacity)

05/21/03 CSE378 Intro to caches 2

Goal of a memory hierarchy

• Keep close to the ALU the information that will be needed
now and in the near future
– Memory closest to ALU is fastest but also most expensive

• So, keep close to the ALU only the information that will be
needed now and in the near future

• Technology trends
– Speed of processors (and SRAM) increase by 60% every year

– Latency of DRAMS decrease by 7% every year

– Hence the processor-memory gap or the memory wall bottleneck

05/21/03 CSE378 Intro to caches 3

Processor-Memory Performance Gap

10

100

1000

1
89 91 93 95 97 99 01

• x Memory latency decrease (10x over 8 years but densities have increased
100x over the same period)

• o x86 CPU speed (100x over 10 years)

“Memory gap”

“Memory wall”

x x

x
x x

x
o

o

o
o

o

386

Pentium

Pentium Pro
Pentium III

Pentium IV

05/21/03 CSE378 Intro to caches 4

Typical numbers

Technology Typical access time $/Mbyte

 SRAM 3-20 ns $50-200

 DRAM 40-120ns $1-10

 Disk milliseconds ≈ 106 ns $0.01-0.1

05/21/03 CSE378 Intro to caches 5

Principle of locality

• A memory hierarchy works because text and data are not
accessed randomly

• Computer programs exhibit the principle of locality
– Temporal locality: data/code used in the past is likely to be reused

in the future (e.g., code in loops, data in stacks)

– Spatial locality: data/code close (in memory addresses) to he data/
code that is being presently referenced will be referenced in the
near future (straight-line code sequence, traversing an array)

05/21/03 CSE378 Intro to caches 6

Caches

• Registers are not sufficient to keep enough data locality
close to the ALU

• Main memory (DRAM) is too “far”. It takes many cycles
to access it
– Instruction memory is accessed every cycle

• Hence need of fast memory between main memory and
registers. This fast memory is called a cache.
– A cache is much smaller (in amount of storage) than main memory

• Goal: keep in the cache what’s most likely to be referenced
in the near future

05/21/03 CSE378 Intro to caches 7

Basic use of caches

• When fetching an instruction, first check to see whether it
is in the cache
– If so (cache hit) bring the instruction from the cache to the IR.
– If not (cache miss) go to next level of memory hierarchy, until

found

• When performing a load, first check to see whether it is in
the cache
– If cache hit, send the data from the cache to the destination register
– If cache miss go to next level of memory hierarchy, until found

• When performing a store, several possibilities
– Ultimately, though, the store has to percolate to main memory

05/21/03 CSE378 Intro to caches 8

Levels in the memory hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-cache
8-256KB

Off-chip cache; 128KB - 8MB

Main memory; up to 4 GB

Secondary memory; 10-100’s of GB

Archival storage

SRAM; a few ns

SRAM/DRAM;
≈ 10-20 ns

DRAM; 40-100 ns

a few milliseconds

05/21/03 CSE378 Intro to caches 9

Caches are ubiquitous

• Not a new idea. First cache in IBM System/85 (late 60’s)

• Concept of cache used in many other aspects of computer
systems
– disk cache, network server cache etc.

• Works because programs exhibit locality

• Lots of research on caches in last 20 years because of the
increasing gap between processor speed and (DRAM)
memory latency

• Every current microprocessor has a cache hierarchy with at
least one level on-chip

05/21/03 CSE378 Intro to caches 10

Main memory access (review)

• Recall:
– In a Load (or Store) the address in an index in the memory array

– Each byte of memory has a unique address, i.e., the mapping
between memory address and memory location is unique

ALU

Address

Main
Mem

05/21/03 CSE378 Intro to caches 11

Cache Access for a Load or an Instr. fetch

• Cache is much smaller than main memory
– Not all memory locations have a corresponding entry in the cache

at a given time

• When a memory reference is generated, i.e., when the
ALU generates an address:
– There is a look-up in the cache: if the memory location is mapped

in the cache, we have a cache hit. The contents of the cache
location is returned to the ALU.

– If we don’t have a cache hit (cache miss), we have to look in next
level in the memory hierarchy (i.e., other cache or main memory)

05/21/03 CSE378 Intro to caches 12

Cache access

ALU

Address

Cache

Main
memory

How do you know
where to look?

How do you know if
there is a hit?

Main memory is
accessed only if there
was a cache miss

hit

miss

05/21/03 CSE378 Intro to caches 13

Some basic questions on cache design

• When do we bring the contents of a memory location in
the cache?

• Where do we put it?

• How do we know it’s there?

• What happens if the cache is full and we want to bring
something new?
– In fact, a better question is “what happens if we want to bring

something new and the place where it’s supposed to go is already
occupied?”

05/21/03 CSE378 Intro to caches 14

Some “top level” answers

• When do we bring the contents of a memory location in
the cache? -- The first time there is a cache miss for that
location, that is “on demand”

• Where do we put it? -- Depends on cache organization
(see next slides)

• How do we know it’s there? -- Each entry in the cache
carries its own name, or tag

• What happens if the cache is full and we want to bring
something new? One entry currently in the cache will be
replaced by the new one

05/21/03 CSE378 Intro to caches 15

Generic cache organization

Address

Address
Address
Address
Address

Address

data
data
data
data

data

Address
or tag

Generated by ALU

If address (tag) generated by ALU = address (tag) of a
cache entry, we have a cache hit; the data in the cache
entry is good

Cache entry or
cache block or
cache line

05/21/03 CSE378 Intro to caches 16

Cache organizations

• Mapping of a memory location to a cache entry can range
from full generality to very restrictive
– In general, the data portion of a cache block contains several words

• If a memory location can be mapped anywhere in the
cache (full generality) we have a fully associative cache

• If a memory location can be mapped at a single cache
entry (most restrictive) we have a direct-mapped cache

• If a memory location can be mapped at one of several
cache entries, we have a set-associative cache

05/21/03 CSE378 Intro to caches 17

How to check for a hit?

• For a fully associative cache
– Check all tag (address) fields to see if there is a match with the

address generated by ALU

– Very expensive if it has to be done fast because need to perform all
the comparisons in parallel

– Fully associative caches do not exist for general-purpose caches

• For a direct mapped cache
– Check only the tag field of the single possible entry

• For a set associative cache
– Check the tag fields of the set of possible entries

05/21/03 CSE378 Intro to caches 18

Cache organization -- direct-mapped

• Most restricted mapping
– Direct-mapped cache. A given memory location (block) can only

be mapped in a single place in the cache. Generally this place
given by:

(block address) mod (number of blocks in cache)

05/21/03 CSE378 Intro to caches 19

Direct-mapped cache

Cache

Main memory

All addresses
mod C map to
the same cache
blockC lines

C lines

05/21/03 CSE378 Intro to caches 20

Fully-associative cache

• Most general mapping
– Fully-associative cache. A given memory location (block) can be

mapped anywhere in the cache.

– No cache of decent size is implemented this way but this is the
(general) mapping for pages from virtual to physical space (disk to
main memory, see later) and for small TLB’s (this will also be
explained soon).

05/21/03 CSE378 Intro to caches 21

Fully-associative cache

Cache

Main memoryAny memory
block can map to
any cache block

05/21/03 CSE378 Intro to caches 22

Set-associative caches

• Less restricted mapping
– Set-associative cache. Blocks in the cache are grouped into sets

and a given memory location (block) maps into a set. Within the
set the block can be placed anywhere. Associativities of 2 (two-
way set-associative),4, 8 and even 16 have been implemented.

• Direct-mapped = 1-way set-associative

• Fully associative with m entries is m-way set associative

05/21/03 CSE378 Intro to caches 23

Set-associative cache

Cache

Main memory

A memory block maps into a
specific block of either set

Bank 0 Bank 1

05/21/03 CSE378 Intro to caches 24

Cache hit or cache miss?

• How to detect if a memory address (a byte address) has a
valid image in the cache:

• Address is decomposed in 3 fields:
– block offset or displacement (depends on block size)

– index (depends on number of sets and set-associativity)

– tag (the remainder of the address)

• The tag array has a width equal to tag

05/21/03 CSE378 Intro to caches 25

Hit detection (direct-mapped cache)

data

data

data

data
data

data
tag
tag
tag
tag

tag

tag

Tag index d

If tag(gen. address) = tag(entry pointed by index in cache),
we have a hit

d corresponds to number
of bytes in the block;

index corresponds to
number of blocks in the
cache;

tag is the remaining bits
in the address.

These fields
have the same
size

05/21/03 CSE378 Intro to caches 26

Example of a direct-mapped cache

• DEC Station 3100
– 64 KB (when giving the size, or capacity, of a cache, only the data

part is counted)

– Each block is 4 bytes (block size); hence 16 K blocks (aka lines)

– displacement field: d = 2 bits (d = log2 (block size))

– index field: i = 14 bits (i = log2 (nbr of blocks))

– tag field : t = 32 - 14 -2 = 16 bits

05/21/03 CSE378 Intro to caches 27

Dec 3100

data

data

data

data
data

data
tag
tag
tag
tag

tag

tag

Tag index d

16 bits

16 bits 14 bits 2 bits

32 bits

=?
Yes; cache hit

Data to ALU

No; cache miss; to main memory

05/21/03 CSE378 Intro to caches 28

Exxample of a Cache with longer blocks
(cap. 64 KB, block size 16 bytes)

data

data

data

data
data

data
tag
tag
tag
tag

tag

tag

Tag index d

16 bits

16 bits 12 bits 4 bits

128 bits

=?
Yes; cache hit

Data to ALUNo; cache miss; to main memory

mux

05/21/03 CSE378 Intro to caches 29

Why set-associative caches?

• Cons
– The higher the associativity the larger the number of comparisons

to be made in parallel for high-performance (can have an impact on
cycle time for on-chip caches)

• Pros
– Better hit ratio

– Great improvement from 1 to 2, less from 2 to 4, minimal after that

05/21/03 CSE378 Intro to caches 30

Set associative mapping
Index = log (number of blocks)/
associativity

Note: we need one comparator per
bank + mux to see if we have a hit.

Bank 0 Bank 1

