
4/14/2003 CSE378 MIPS ISA 1

MIPS History

• MIPS is a computer family
– R2000/R3000 (32-bit); R4000/4400 (64-bit); R10000 (64-bit) etc.

• MIPS originated as a Stanford research project under the
direction of John Hennessy
– Microprocessor without Interlocked Pipe Stages

• MIPS Co. bought by SGI
• MIPS used in previous generations of DEC (now Compaq)

workstations
• Now MIPS Technologies is the embedded systems market
• MIPS is a RISC

4/14/2003 CSE378 MIPS ISA 2

ISA MIPS Registers

• Thirty-two 32-bit registers $0,$1,…,$31 used for
– integer arithmetic; address calculation; temporaries; special-

purpose functions (stack pointer etc.)

• A 32-bit Program Counter (PC)
• Two 32-bit registers (HI, LO) used for mult. and division
• Thirty-two 32-bit registers $f0, $f1,…,$f31 used for

floating-point arithmetic
– Often used in pairs: 16 64-bit registers

• Registers are a major part of the “state” of a process

4/14/2003 CSE378 MIPS ISA 3

MIPS Register names and conventions

Register Name Function Comment

$0 Zero Always 0 No-op on write

$1 $at Reserved for assembler Don’t use it

$2-3 $v0-v1 Expr. Eval/funct. Return

$4-7 $a0-a3 Proc./func. Call parameters

$8-15 $t0-t7 Temporaries; volatile Not saved on proc. Calls

$16-23 $s0-s7 Temporaries Should be saved on calls

$24-25 $t8-t9 Temporaries; volatile Not saved on proc. Calls

$26-27 $k0-k1 Reserved for O.S. Don’t use them

$28 $gp Pointer to global static memory

$29 $sp Stack pointer

$30 $fp Frame pointer

$31 $ra Proc./funct return address

4/14/2003 CSE378 MIPS ISA 4

MIPS = RISC = Load-Store architecture

• Every operand must be in a register
– Except for some small integer constants that can be in the

instruction itself (see later)

• Variables have to be loaded in registers
• Results have to be stored in memory
• Explicit Load and Store instructions are needed because

there are many more variables than the number of registers

4/14/2003 CSE378 MIPS ISA 5

Example

• The HLL statements
a = b + c
d = a + b

• will be “translated” into assembly language as:
load b in register rx
load c in register ry
rz <- rx + ry
store rz in a
rt <- rz + rx
store rt in d

4/14/2003 CSE378 MIPS ISA 6

MIPS Information units

• Data types and size:
– Byte
– Half-word (2 bytes)
– Word (4 bytes)
– Float (4 bytes; single precision format)
– Double (8 bytes; double-precision format)

• Memory is byte-addressable
• A data type must start at an address evenly divisible by its

size (in bytes)
• In little-endian environment, the address of a data type is

the address of its lowest byte

4/14/2003 CSE378 MIPS ISA 7

Addressing of Information units
Byte address 0

Half-word address 0

Word address 0

Byte address 2

Half-word address 2

Byte address 8

Half-word address 8

Word address 8

Byte address 5

0123

4/14/2003 CSE378 MIPS ISA 8

SPIM Convention

Words listed from left to right but little endians within words

[0x7fffebd0] 0x00400018 0x00000001 0x00000005 0x00010aff

Byte 7fffebd2 Word 7fffebd4 Half-word 7fffebde

4/14/2003 CSE378 MIPS ISA 9

Assembly Language programming or
How to be nice to your TAs

• Use lots of detailed comments
• Don’t be too fancy
• Use lots of detailed comments
• Use words (rather than bytes) whenever possible
• Use lots of detailed comments
• Remember: The address of a word is evenly divisible by 4
• Use lots of detailed comments
• The word following the word at address i is at address i+4
• Use lots of detailed comments

4/14/2003 CSE378 MIPS ISA 10

MIPS Instruction types

• Few of them (RISC philosophy)
• Arithmetic

– Integer (signed and unsigned); Floating-point

• Logical and Shift
– work on bit strings

• Load and Store
– for various data types (bytes, words,…)

• Compare (of values in registers)
• Branch and jumps (flow of control)

– Includes procedure/function calls and returns

4/14/2003 CSE378 MIPS ISA 11

Notation for SPIM instructions

• Opcode rd, rs, rt
• Opcode rt, rs, immed
• where

– rd is always a destination register (result)
– rs is always a source register (read-only)
– rt can be either a source or a destination (depends on the opcode)
– immed is a 16-bit constant (signed or unsigned)

4/14/2003 CSE378 MIPS ISA 12

Arithmetic instructions in SPIM

• Don’t confuse the SPIM format with the “encoding” of
instructions that we’ll see soon

Opcode Operands Comments
Add rd,rs,rt #rd = rs + rt
Addi rt,rs,immed #rt = rs + immed
Sub rd,rs,rt #rd = rs - rt

4/14/2003 CSE378 MIPS ISA 13

Examples

Add $8,$9,$10 #$8=$9+$10
Add $t0,$t1,$t2 #$t0=$t1+$t2
Sub $s2,$s1,$s0 #$s2=$s1-$s0

Addi $a0,$t0,20 #$a0=$t0+20
Addi $a0,$t0,-20 #$a0=$t0-20

Addi $t0,$0,0 #clear $t0
Sub $t5,$0,$t5 #$t5 = -$t5

4/14/2003 CSE378 MIPS ISA 14

Integer arithmetic

• Numbers can be signed or unsigned
• Arithmetic instructions (+,-,*,/) exist for both signed and

unsigned numbers (differentiated by Opcode)
– Example: Add and Addu

Addi and Addiu
Mult and Multu

• Signed numbers are represented in 2’s complement
• For Add and Subtract, computation is the same but

– Add, Sub, Addi cause exceptions in case of overflow
– Addu, Subu, Addiu don’t

4/14/2003 CSE378 MIPS ISA 15

How does the CPU know if the numbers are
signed or unsigned?

• It does not!
• You do (or the compiler does)
• You have to tell the machine by using the right instruction

(e.g. Add or Addu)

