
Section 7 material
5/13/04

C programming

C differences (from Java, etc):

- procedural
o no classes

- In standard C must be declared on top of code block, before actual code.
- No new / delete

o Use malloc/free
- No boolean types

o 0 false, anything else true
- Typechecking not strictly enforced

Program components:

- Preprocessor:
#include – preprocessor directive, inlines given file
For standard input/output library functions and other useful functions:
#include <stdio.h>

 #include <stdlib.h>

#define X Y -- replaces all occurrences of X with Y. Use for declaring constants
or macros. I.e. #define OP_j 0x02

- can directly declare global variables (unlike Java)
- functions and code declared just like Java.
- Variables work the same way: int, char, double, etc.
- Same loop constructs: for, while, do..while
- Casts… int x; char y; y = (char)x;
- Arrays: int a[10]; declares an array which holds 10 ints. Works for 2D, etc.

o Zero-based
o Can init like int a[10] = {0,1,2,…} ;

- Pointers: declare a variable which holds an address to some other variable.
o I.e. int *a; declares a to hold a pointer to some integer. * *does not**

allocate the integer itself!
o & takes address of a variable.

§ int b;
§ a = &b;

o * dereferences a pointer, i.e. essentially executes a lw or a sw
§ *a = 42; // move $t0, 42; la $t1, a; sw $t0, 0($1)
§ b = *a; // load contents of a, move into b.

o An array variable is actually a pointer to the first array element.
§ i.e. above, a is of type (int *) and points to start of the array in

memory.

o char *str - strings are commonly represented and passed around like this,
as an array of characters. No explicit length is stored! (buffer overruns…)

o Powerful, lead to many subtle bugs, difficult to debug. USE CAUTION!
o Probably won’ t need in assignment except maybe for arrays or strings.

Won’ t need pointer arithmetic.
- Structs:

o Not classes – they don’ t have methods
o struct struct_name {

Int a,b,c;
Char *str;

} my_struct;
my_struct.a = 42;

my_struct is an instantiation of struct which is named by struct_name. To
declare another such struct, you can use:
 struct struct_name my_struct2;
Both struct name and instantiation parts are optional. The instantiation
part can be a comma-separated list.

- Need main function:
int main(int argc, char **argv)

 argc = number of arguments,

argv = array of arguments; each argument is a string, first argument is always
program name

 Both are optional

Compiling:

- gcc –o myprg myprg.c [otherfile1.c otherfile2.c …]
- -o flag tells the output executable name
- -Wall prints out all warnings
- -O6 turns on full optimization (that’s O, not zero)
- -g enables debugging information to be used

Debugging:

- gdb myprg
- Look up commands

Reference:

- Issue “man printf” or any other function

Programming tips:

- Bit manipulation:
o << and >> are your friends. >> will do arithmetic or logical shift

depending on whether the operand is signed or not.

o Know & and | (and, or), and how to form bitmasks. Also, ^ is XOR, ~ is
NOT, both bitwise. ! is boolean not.

o Extract bits 0..m in a 32-bit number: x & ((1 << m)-1)
o Extract bits m..31 in a 32-bit number: x >> m
o Multiply by 2^n à shift left by n
o Divide by 2^n à shift right by n (which shift, logical or arithmetic?)
o What does a power of 2 look like? (only one bit set)
o Example: given instr, how do you extract rd (bits 15…11):

§ (instr >> 11) & 0x1f
§ 0x1f = 11111

- Assignment shortcuts (sometimes confusing, should understand):
o Avoid replicating variable when used as both source and destination
o x++, x+=n, x &= 0xff, etc.
o x = x >> 1 à x >>= 1;

*str = ‘z’ ; str++; à *str++ = ‘z’ ;
- Can use booleans in statements:

if (x == y) return 1; else return 0; à return x == y;
- Output:

o printf(format string, values); (variable length)
o Examples:

§ printf(“What I want to print…\n”);
§ printf(“My decimal number: %d\n” , num);
§ printf(“My number printed as hex: %x, with big digits: %X\n” ,

num, num);
§ char str[256] = “ this is a test!” ;

printf(“My string: %s\n” , str);
o End your strings with \n, newline

- Strings:
o Must preallocate space for them!
o Cannot declare char *buf and then use buf.
o Either preallocate statically, or use malloc:

§ char buf[1024] allocates 1024 characters;
§ Can initialize when declaring:

• Char buf[1024] = “Hello!” ;
• Will put six characters into buf (hello and !), and also put

the null termination character. Will not clear the rest.

