CSE 378 Section 1

Announcements:

- sign up for mailing list, should have received assignment 1 correction.
- Typo on assignment 1: 0fff fff $\rightarrow 0$ fff ffff
- Check out SPIM, do assignment 0

Review of number systems

We normally count in the decimal, base-ten system.
Numbers broken down by digits:

$$
\text { E.g. } 378.04=3 \times 10^{2}+7 \times 10^{1}+8 \times 10^{0}+0 \times 10^{-1}+4 \times 10^{-2}
$$

Computers use binary (base-two), because it's more convenient (why?).
Two digits: 0, 1. Example: $00101010_{2}=42_{10}$.
Addition/subtraction works just like decimal:
$0+0=0 \quad 1+0=0+1=1 \quad 1+1=0$ with a carry of 1
Examples:

$$
\begin{array}{r}
1010 \\
+\quad 0011 \\
\hline 1101
\end{array} \begin{array}{r}
1101 \\
-\quad 0111 \\
\hline 0110
\end{array}
$$

LSB = least-significant bit
MSB = most-significant bit

Binary to decimal conversion:
Break numbers down using the same formula as for decimal, but using 2 as the base.

$$
\begin{aligned}
& 1011_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=11_{10} \\
& 101010_{2}=1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
\end{aligned}
$$

With fractions:

$$
10.101_{2}=1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}=2.625_{10}
$$

Decimal to binary conversion

Repeatedly divide by 2 ; write down the remainders. Keep doing this until you divide 1
by 2 . When finished, read remainders in reverse order to get the answer. Example:

$44 / 2=22$	remainder 0 LSB	
$22 / 2=11$	remainder 0	
$11 / 2=5$	remainder 1	
$5 / 2=2$	remainder 1	
$2 / 2=1$	remainder 0	
$1 / 2=0$	remainder 1 MSB	read this way

Answer: 101100

Octal and Hexadecimal systems - compact representation for binary

Octal = base 8; digits 0..7.
Hexadecimal (hex) = base 16; digits $0 . .9$ then A..F. Each hex digit is four bits in binary. Used for convenience (e.g. writing out 32 bits is a pain!)
Conversion from binary - just break bits in groups of three for octal and groups of four for hex; each group is one digit.

Example:

$$
\begin{aligned}
& 10011110001_{2} \text { to octal and hex: } \\
& 010|011| 110 \mid 001=2361_{8} \text { and } 0100|1111| 0001=4 \mathrm{~F} 1_{16}
\end{aligned}
$$

Decimal to hex: use same process as for binary to hex, but divide by 16.
Hex to binary: easy! For each digit, just write its 4-bit binary equivalent (see chart)
Quick reference for conversion:

Binary	Decimal	Hex	Binary	Decimal	Hex
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	B
0100	4	4	1100	12	C
0101	5	5	1101	13	D
0110	6	6	1110	14	E
0111	7	7	1111	15	F

Negative numbers

Generally three forms:

- Sign \& Magnitude

Reserve one bit as sign bit. Not the best way (why? two zeros, arithmetic broken)

- Ones-complement

The binary representation of a negative number is the bitwise complement of the binary representation of the positive number (i.e. flip bits).

Example: $3_{10}=11_{2} ;-3_{10}=$ complement $\left(11_{2}\right)=1100$. Still not good $(w h y ? ~ s t i l l$ two zeros).

- Twos-complement

The binary representation of a negative number is the bitwise complement of the binary representation of the positive number, plus 1 . Works for getting negatives of both positive numbers and negative numbers. Most significant bit = sign bit.

$$
\begin{aligned}
& -3_{10}=\text { complement }\left(0011_{2}\right)+1_{2}=1100_{2}+1_{2}=1101_{2} . \\
& -\left(-3_{10}\right)=\text { compl. }\left(-3_{10}\right)+1_{2}=\text { compl. }\left(1101_{2}\right)+1=0010+1=0011_{2}=3_{10}
\end{aligned}
$$

How do you convert a negative twos-complement number to decimal? And viceversa?

Twos-complement arithmetic
Addition - same as regular binary addition. Subtraction - addition of the negative of the subtracted number.
Example: 4-3 becomes: 0100

$$
\frac{+1101}{0001}(\text { discard final carry })=1_{10} .
$$

Overflow

The operations as defined above can overflow. For example, let's try $(-7)+(-6)$, while limiting numbers to 4 bits...

$$
1001
$$

$$
+1010
$$

$0011($ final carry discarded $)=3_{10}$.
Definitely the wrong answer.
How do we know when overflow occurred?
Summing two positive numbers gives a negative result.
Summing two negative numbers gives a positive result.
Summing a positive and a negative number will never overflow. Why?

Sign-extension

Suppose we want to convert an 8-bit signed (twos-complement) number to a 16 bit signed number. Fill in lower bits from the original number; fill in the unused higher bits with the sign bit (i.e. 0 if number is positive; 1 if number is negative). Example:
00101010_{2} becomes 0000000000101010_{2}
11101010_{2} becomes 1111111111101010_{2}

Number Ranges

A N -bit integer can represent 2^{N} different combinations. E.g. a 16-bit unsigned integer can represent 0 .. $2^{16}-1$ which is 0 .. 65535 . A 16 -bit signed number can represent -2^{15} to $2^{15}-1$, i.e. $-32768 \ldots 32767$.

