CSE 378 Section 1 4/1/04

Announcements:

- sign up for mailing list, should have received assignment 1 correction.
- Typo on assignment 1: 0fff fff \rightarrow 0fff ffff
- Check out SPIM, do assignment 0

Review of number systems

We normally count in the decimal, base-ten system. Numbers broken down by digits:

E.g. $378.04 = 3 \times 10^{2} + 7 \times 10^{1} + 8 \times 10^{0} + 0 \times 10^{-1} + 4 \times 10^{-2}$.

Computers use binary (base-two), because it's more convenient (why?).

Two digits: 0, 1. Example: $0010 \ 1010_2 = 42_{10}$.

Addition/subtraction works just like decimal: 0+0=0 1+0=0+1=1 1+1=0 with a carry of 1

Examples:

	1010	1101
+	0011	- 0111
	1101	0110

LSB = least-significant bit MSB = most-significant bit

Binary to decimal conversion:

Break numbers down using the same formula as for decimal, but using 2 as the base.

With fractions:

$$10.101_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 2.625_{10}$$

Decimal to binary conversion

Repeatedly divide by 2; write down the remainders. Keep doing this until you divide 1 by 2. When finished, read remainders in reverse order to get the answer. Example:

44 / 2 = 22 22 / 2 = 11	remainder 0 LSB remainder 0	•
,		
11 / 2 = 5	remainder 1	
5 / 2 = 2	remainder 1	
2 / 2 = 1	remainder 0	
1 / 2 = 0	remainder 1 MSB	read this way

Answer: 101100

Octal and Hexadecimal systems – compact representation for binary

Octal = base 8; digits 0..7.

Hexadecimal (hex) = base 16; digits 0..9 then A..F. Each hex digit is four bits in binary. Used for convenience (e.g. writing out 32 bits is a pain!)

Conversion from binary – just break bits in groups of three for octal and groups of four for hex; each group is one digit.

Example:

 10011110001_2 to octal and hex: $010 \mid 011 \mid 110 \mid 001 = 2361_8$ and $0100 \mid 1111 \mid 0001 = 4F1_{16}$

Decimal to hex: use same process as for binary to hex, but divide by 16.

Hex to binary: easy! For each digit, just write its 4-bit binary equivalent (see chart)

Quick reference for conversion:

Binary	Decimal	Hex	Binary	Decimal	Hex
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	А
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Negative numbers

Generally three forms:

- Sign & Magnitude Reserve one bit as sign bit. Not the best way (why? *two zeros, arithmetic broken*)
- Ones-complement

The binary representation of a negative number is the bitwise complement of the binary representation of the positive number (i.e. flip bits).

Example: $3_{10} = 11_2$; $-3_{10} =$ complement (11_2) = 1100. Still not good (why? *still two zeros*).

• Twos-complement

The binary representation of a negative number is the bitwise complement of the binary representation of the positive number, <u>plus</u> 1. Works for getting negatives of both positive numbers <u>and</u> negative numbers. Most significant bit = sign bit.

 $-3_{10} =$ complement (0011_2) + $1_2 = 1100_2 + 1_2 = 1101_2$. -(- 3_{10}) = compl. (-3_{10}) + $1_2 =$ compl. (1101_2) + $1 = 0010 + 1 = 0011_2 = <math>3_{10}$

How do you convert a negative twos-complement number to decimal? And vice-versa?

Twos-complement arithmetic

Addition – same as regular binary addition. Subtraction – addition of the negative of the subtracted number.

Example: 4 – 3 becomes: 0100 + 11010001 (discard final carry) = 1₁₀.

Overflow

The operations as defined above can overflow. For example, let's try (-7) + (-6), while limiting numbers to 4 bits... 1001

$$\frac{+\ 1010}{0011}$$
 (final carry discarded) = 3₁₀.

Definitely the wrong answer.

How do we know when overflow occurred? Summing two positive numbers gives a negative result. Summing two negative numbers gives a positive result. Summing a positive and a negative number will never overflow. Why?

Sign-extension

Suppose we want to convert an 8-bit signed (twos-complement) number to a 16bit signed number. Fill in lower bits from the original number; fill in the unused higher bits with the sign bit (i.e. 0 if number is positive; 1 if number is negative). Example:

 $\begin{array}{c} 0010 \ 1010_2 \ \text{becomes} \ 0000 \ 0000 \ 0010 \ 1010_2 \\ 1110 \ 1010_2 \ \text{becomes} \ 1111 \ 1111 \ 1110 \ 1010_2 \end{array}$

Number Ranges

A N-bit integer can represent 2^{N} different combinations. E.g. a 16-bit unsigned integer can represent 0 .. 2^{16} -1 which is 0 .. 65535. A 16-bit signed number can represent -2^{15} to 2^{15} -1, i.e. -32768 ... 32767.