
1

4/3/2004 CSE378 Instr. encoding. 1

Instruction encoding

• The ISA defines
– The format of an instruction (syntax)

– The meaning of the instruction (semantics)

• Format = Encoding
– Each instruction format has various fields

– Opcode field gives the semantics (Add, Load etc …)

– Operand fields (rs,rt,rd,immed) say where to find inputs (registers,
constants) and where to store the output

4/3/2004 CSE378 Instr. encoding. 2

MIPS Instruction encoding

• MIPS = RISC hence
– Few (3+) instruction formats

• R in RISC also stands for “Regular”
– All instructions of the same length (32-bits = 4 bytes)

– Formats are consistent with each other
• Opcode always at the same place (6 most significant bits)

• rd and rs always at the same place

• immed always at the same place etc.

4/3/2004 CSE378 Instr. encoding. 3

I-type (immediate) format

• An instruction with an immediate constant has the SPIM
form:

Opcode Operands Comment

Addi $4,$7,78 # $4=$7 + 78

• Encoding of the 32 bits:
– Opcode is 6 bits

– Since we have 32 registers, each register “ name” is 5 bits

– This leaves 16 bits for the immediate constant

Opc rs rt immed

4/3/2004 CSE378 Instr. encoding. 4

I-type format example

Addi $a0,$12,33 # $a0 is also $4 = $12 +33

Addi has opcode 08

31 25 20 15 0

08 12 4 33

In hex: 21840021

Opc rs rt immed

4/3/2004 CSE378 Instr. encoding. 5

Sign extension

• Internally the ALU (adder) deals with 32-bit numbers

• What happens to the 16-bit constant?
– Extended to 32 bits

• If the Opcode says “unsigned” (e.g., Addiu)
– Fill upper 16 bits with 0’ s

• If the Opcodesays “signed” (e.g., Addi)
– Fill upper 16 bits with the msb of the 16 bit constant

• i.e. fill with 0’s if the number is positive

• i.e. fill with 1’s if the number is negative

4/3/2004 CSE378 Instr. encoding. 6

R-type (register) format

• Arithmetic, Logical, and Compare instructions require
encoding 3 registers.

• Opcode (6 bits) + 3 registers (5x3 =15 bits) => 32 -21 = 11
“free” bits

• Use 6 of these bits to expand the Opcode

• Use 5 for the “shift” amount in shift instructions

Opc rs rt rd sht func

2

4/3/2004 CSE378 Instr. encoding. 7

R-type example

Sub $7,$8,$9

Opc =0, funct = 34
rs rt rd

0 8 9 7 0 34

Unused bits

4/3/2004 CSE378 Instr. encoding. 8

Load and Store instructions

• MIPS = RISC = Load-Store architecture
– Load: brings data from memory to a register

– Store: brings data back to memory from a register

• Each load-store instruction must specify
– The unit of info to be transferred (byte, word etc.) through the

Opcode

– The address in memory

• A memory address is a 32-bit byte address

• An instruction has only 32 bits so ….

4/3/2004 CSE378 Instr. encoding. 9

Addressing in Load/Store instructions

• The address will be the sum
– of a base register (register rs)

– a 16-bit offset (or displacement) which will be in the immed field
and is added (as a signed number) to the contents of the base
register

• Thus, one can address any byte within ± 32KB of the
address pointed to by the contents of the base register.

4/3/2004 CSE378 Instr. encoding. 10

Examples of load-store instructions

• Load word from memory:
Lw rt,rs,offset #rt = Memory[rs+offset]

• Store word to memory:
Sw rt,rs,offset #Memory[rs+offset]=rt

• For bytes (or half-words) only the lower byte (or half-
word) of a register is addressable
– For load you need to specify if it is sign-extended or not
Lb rt,rs,offset #rt =sign-ext(Memory[rs+offset])
Lbu rt,rs,offset #rt =zero-ext(Memory[rs+offset])
Sb rt,rs,offset #Memory[rs+offset]= least signif.

#byte of rt

4/3/2004 CSE378 Instr. encoding. 11

Load-Store format

• Need for
– Opcode (6 bits)

– Register destination (for Load) and source (for Store) : rt

– Base register: rs

– Offset (immed field)

• Example
Lw $14,8($sp) #$14 loaded from top of

#stack + 8

35 29 14 8

4/3/2004 CSE378 Instr. encoding. 12

Loading small constants in a register

• If the constant is small (i.e., can be encoded in 16 bits) use
the immediate format with Li (Load immediate)

Li $14,8 #$14 = 8

• But, there is no opcode for Li!

• Li is a pseudoinstruction
– It’ s there to help you

– SPIM will recognize it and transform it into Addi (with sign-
extension) or Ori (zero extended)

Addi $14,$0,8 #$14 = $0+8

3

4/3/2004 CSE378 Instr. encoding. 13

Loading large constants in a register

• If the constant does not fit in 16 bits (e.g., an address)

• Use a two-step process
– Lui (load upper immediate) to load the upper 16 bits; it will zero

out automatically the lower 16 bits

– Use Ori for the lower 16 bits (but not Li, why?)

• Example: Load the constant 0x1B234567 in register $t0
Lui $t0,0x1B23 #note the use of hex constants

Ori $t0,$t0,0x4567

4/3/2004 CSE378 Instr. encoding. 14

How to address memory in assembly
language

• Problem: how do I put the base address in the right register
and how do I compute the offset

• Method 1 (most recommended). Let the assembler do it!
.data #define data section

xyz: .word 1 #reserve room for 1 word at address xyz
…….. #more data
.text #define program section

….. # some lines of code
lw $5, xyz # load contents of word at add. xyz in $5

• In fact the assembler generates:

Lw $5, offset ($gp) #$gp is register 28

4/3/2004 CSE378 Instr. encoding. 15

Generating addresses

• Method 2. Use the pseudo-instruction La (Load address)

La $6,xyz #$6 contains address of xyz

Lw $5,0($6) #$5 contains the contents of xyz
– La is in fact Lui followed by Ori

– This method can be useful to traverse an array after loading the
base address in a register

• Method 3
– If you know the address (i.e. a constant) use Li or Lui + Ori

